

PEAK TEMPERATURE DETERMINATION OF DRILLED SHAFTS EXCLUDED FROM MASS CONCRETE CONSIDERATION IN CURRENT SPECIFICATIONS

BDV25 977-75

FINAL REPORT

Principal Investigators: Gray Mullins, Ph.D., P.E.

Researchers:
Amanda Lewis, Ph.D., E.I.
Tristen Mee, MSME, E.I.
Jeffrey Vomacka, MS, P.E., Retired.

Disclaimer

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the State of Florida Department of Transportation.

SI* (MODERN METRIC) CONVERSION FACTORS

APPROXIMATE CONVERSIONS TO SI UNITS

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
	LENGTH				
in	inches	25.4	millimeters	mm	
ft	feet	0.305	meters	m	
yd	yards	0.914	meters	m	
mi	miles	1.61	kilometers	km	

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
	AREA				
in ²	square inches	645.2	square millimeters	mm ²	
ft ²	square feet	0.093	square meters	m ²	
yd²	square yard	0.836	square meters	m ²	
ac	acres	0.405	hectares	ha	
mi ²	square miles	2.59	square kilometers	km²	

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
VOLUME					
fl oz	fluid ounces	29.57	milliliters	mL	
gal	gallons	3.785	liters	L	
ft ³	cubic feet	0.028	cubic meters	m³	
yd³	cubic yards	0.765	cubic meters	m³	
NOTE: volume	NOTE: volumes greater than 1000 L shall be shown in m ³				

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
	MASS				
oz	ounces	28.35	grams	g	
lb	pounds	0.454	kilograms	kg	
Т	short tons (2000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")	

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
TEMPERATURE (exact degrees)					
°F	Fahrenheit	5 (F-32)/9 or (F-32)/1.8	Celsius	°C	

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL
ILLUMINATION				
fc	foot-candles	10.76	lux	lx
fL	foot-Lamberts	3.426	candela/m²	cd/m ²

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
	FORCE and PRESSURE or STRESS				
lbf	poundforce	4.45	newtons	N	
lbf/in²	poundforce per square inch	6.89	kilopascals	kPa	
kip	kilopound	4.45	kilonewtons	kN	

APPROXIMATE CONVERSIONS TO SI UNITS

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
	LENGTH				
mm	millimeters	0.039	inches	in	
m	meters	3.28	feet	ft	
m	meters	1.09	yards	yd	
km	kilometers	0.621	miles	mi	

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
	AREA				
mm²	square millimeters	0.0016	square inches	in ²	
m²	square meters	10.764	square feet	ft ²	
m²	square meters	1.195	square yards	yd ²	
ha	hectares	2.47	acres	ac	
km²	square kilometers	0.386	square miles	mi ²	

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
	VOLUME				
mL	milliliters	0.034	fluid ounces	fl oz	
L	liters	0.264	gallons	gal	
m³	cubic meters	35.314	cubic feet	ft ³	
m³	cubic meters	1.307	cubic yards	yd ³	

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
	MASS				
g	grams	0.035	ounces	oz	
kg	kilograms	2.202	pounds	lb	
Mg (or "t")	megagrams (or "metric ton")	1.103	short tons (2000 lb)	Т	

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
TEMPERATURE (exact degrees)					
°C	Celsius	1.8C+32	Fahrenheit	∘F	

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL
ILLUMINATION				
lx	lux	0.0929	foot-candles	fc
cd/m²	candela/m ²	0.2919	foot-Lamberts	fl

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL		
	FORCE and PRESSURE or STRESS					
N	newtons	0.225	poundforce	lbf		
kPa	kilopascals	0.145	poundforce per square inch	lbf/in ²		
kN	kilonewtons	0.225	kilopound	kip		

^{*}SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

1. Report No.	Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle		5 Deport Date	
	INATION OF DRILLED SHAFTS	5. Report Date	
		April 2023	
EXCLUDED FROM MASS CONC	RETE CONSIDERATION IN		
CURRENT SPECIFICATIONS		Performing Organization Code	
7. Author(s)		8. Performing Organization Report No.	
G. Mullins, A. Lewis, T. Mee, and			
9. Performing Organization Name and	Address	10. Work Unit No. (TRAIS)	
University of South Florida			
Department of Civil and Enviro	onmental Engineering		
4202 E. Fowler Avenue, ENB 1			
Tampa, FL 33620		11. Contract or Grant No.	
		BDV25 977-75	
12. Sponsoring Agency Name and Add	fress	13. Type of Report and Period Covered	
Florida Department of Transpo	rtation	Final Report	
605 Suwannee Street, MS 30		01/21 - 01/23	
Tallahassee, FL 32399			
		14. Sponsoring Agency Code	
15. Supplementary Notes			
FDOT Project Manager:			
Jose Armenteros			
16. Abstract			
		lly range in diameter from 3 to 15 feet. Within	
		from requiring no mass concrete information	
		s greater than 6 feet in diameter. However, the	
		s were required to assess temperature for any	
element with a minimum dimension greater than 3 feet and volume to surface area ratio greater than 1 foot. Shafts supporting surface area ratio greater than 1 foot. Shafts supporting surface area ratio greater than 1 foot. Shafts supporting surface area ratio greater than 1 foot. Shafts supporting surface area ratio greater than 1 foot. Shafts supporting surface area ratio greater than 1 foot. Shafts supporting surface area ratio greater than 1 foot. Shafts supporting			

miscellaneous (non-bridge) structures until recently required no temperature control regardless of dimensions. While the term mass concrete stems from massive structures that traditionally generated unsafe temperature levels, today concrete mix designs use far more cementitious materials per unit volume. Hence, unsafe temperature levels can occur with nearly any size foundation element if the cementitious materials content is too high.

Recently, the American Concrete Institute (ACI) suggested restrictions on peak and differential temperature limits based on a concrete element minimum dimension and the weight of cementitious materials per unit volume. Using the ACI criteria, a typical FDOT drilled shaft with the minimum specified 600 lbs/yd³ of cementitious materials would be restricted to a size no larger than 2 feet in diameter; the minimum FDOT shaft diameter is 3.5 feet. Hence, the ACI criteria, if applied to FDOT projects, requires all shafts to provide a temperature control plan. The disconnect between FDOT shafts and the ACI criteria is two-fold: (1) the curing conditions of underground concrete is not the same as above ground formed and poured elements, and (2) FDOT peak temperature limits are higher than ACI limits. This study did not aim to address which of the two temperature limits is most correct, but rather focused on determining the developed peak and differential temperature in drilled shafts with varied concrete mix designs and from shafts of different diameters.

Shaft temperature information was obtained from hundreds of shafts routinely tested using thermal integrity methods and from shafts more thoroughly instrumented to determine the cross-shaft temperature distribution. Results of field data were then used to calibrate numerical models where the internal temperature rise, magnitude, and distribution was verified. Model runs were used to produce predictive methods to better assess when a given shaft size and mix design might be unsafe. However, the threshold of safety is left to the reviewer when using a given acceptance criteria (FDOT, ACI, or other).

17. Key Words Drilled shaft, peak temperature, differential temperature,		18. Distribution Statement No restrictions.		
mass concrete 19. Security Classif. (of this report) Unclassified.	20. Security Classif. Unclassified.		21. No. of Pages 199	22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

Acknowledgments

The authors would like to acknowledge the Florida Department of Transportation for funding this project, with specific thanks to Jose Armenteros and the review team for their insightful contributions. Appreciation is also given to R.W. Harris Inc., Conti Corporation, Beck Group, RK&K, and FGE for their collaboration and support.

Executive Summary

Drilled shafts are reinforced concrete deep foundation elements that typically range in diameter from 3 to 15 feet. Within the past 20 years, drilled shaft installation plans for FDOT projects have gone from requiring no mass concrete information (regardless of shaft diameter) to requiring steps to control temperature for shafts greater than 6 feet in diameter. However, the most recent specifications were in conflict, where all other concrete elements were required to assess temperature for any element with a minimum dimension greater than 3 feet and the volume to surface area ratio is no more than 1 foot. For shafts supporting miscellaneous (non-bridge) structures until recently required no temperature control regardless of dimensions. While the term mass concrete stems from massive structures that traditionally generated unsafe temperature levels, today concrete mix designs use far more cementitious materials per unit volume. Hence, unsafe temperature levels can occur with nearly any size foundation element if the cementitious materials content is too high.

Recently, the American Concrete Institute (ACI) suggested restrictions on peak and differential temperature limits based on a concrete element minimum dimension and the weight of cementitious materials per unit volume. Using the ACI criteria, a typical FDOT drilled shaft with the minimum specified 600 lbs/yd³ of cementitious materials would be restricted to a size no larger than 2 feet in diameter; the minimum FDOT shaft diameter is 3.5 feet. Hence, the ACI criteria, if applied to FDOT projects, requires all shafts to provide a temperature control plan. The disconnect between FDOT shafts and the ACI criteria is two-fold: (1) the curing conditions of underground concrete is not the same as above ground formed and poured elements, and (2) FDOT peak temperature limits are higher than ACI limits. This study did not aim to address which of the two temperature limits is most correct, but rather focused on determining the true peak and differential temperature in drilled shafts with varied concrete mix designs and from shafts of different diameters.

Shaft temperature information was obtained from hundreds of shafts routinely tested using thermal integrity methods and from shafts more thoroughly instrumented to determine the cross-shaft temperature distribution. Results of field data were then used to calibrate numerical models where the internal temperature rise, magnitude, and distribution was verified. Model runs were used to produce predictive methods to better assess when a given shaft size and mix design might be unsafe. However, the threshold of safety is left to the reviewer when using a given acceptance criteria (FDOT, ACI, or other).

Table of Contents

Cha	pter Or	ne: Introduction	1
1.1	Obj	ective Statement	2
1.2	Bac	kground	2
	1.2.1	Heat of Hydration	2
	1.2.2	Mass Concrete and Mass Concrete Effects	2
	1.2.3	Mass Concrete Specifications	3
	1.2.4	Drilled Shaft Construction	7
	1.2.5	Drilled Shaft Quality Assurance and Quality Control	10
1.3	Org	anization of the Report	14
Cha	pter Tv	vo: Obtain Previously Collected Data	16
2.1	Intr	oduction	16
2.2	Sun	nmary of Catalogued Drilled Shafts	17
2.3	Exp	oloratory Analysis	18
Cha	pter Th	ree: Collection of New Data	22
3.1	Jud	y Genshaft Honors College Drilled Shaft DS-6, Tampa, Florida	22
	3.1.1	Instrumentation	23
	3.1.2	Collected Data	26
3.2	Pol	k Parkway Drilled Shaft OC-13, Auburndale, Florida	33
	3.2.1	Instrumentation	39
	3.2.2	Collected Data	44
3.3	I-4	Drilled Shaft OC-19, Polk City, Florida	49
	3.3.1	Instrumentation	53
	3.3.2	Collected Data	58
3.4	I-39	95, SR 836, and I-95 Intersection in Miami, Florida	65
3.5	N. 1	Florida and Sinclair Hills Drilled Shaft, Tampa, Florida	70
	3.5.1	Instrumentation	73
	3.5.2	Collected Data	79
3.6	US	17 Drilled Shaft 1-4, Bartow, Florida	83
	3.6.1	Instrumentation	86

	3.6.2	Collected Data	90
4	Chapte	er Four: Data Analysis and Modeling	95
4.1	Mo	deling Approach	95
4.2	Mo	del Verification	96
4.3	Ten	nperature Contour Plots	98
4.4	Dat	a Analysis	108
	4.4.1	Model Data Summaries	108
	4.4.2	Predictive Design Equations	109
	4.4.3	Quality Assurance Estimation Equations: Model Cage-to-Core Method	122
	4.4.4	Quality Assurance Estimation Equations: Field Gradient Method	129
Cha	pter Fiv	ve: Summary and Conclusions	139
5.1	Sun	nmary	139
5.2	Cor	nclusions and Recommendations	146
Ref	erences		148
App	endix A	A: Judy Genshaft Honors College Drilled Shaft DS-6 Construction Documents	151
App	endix I	3: Polk Parkway Drilled Shaft OC-13 Construction Documents	206
App	endix (C: I-4 Drilled Shaft OC-19 Construction Documents	218
App	endix I	D: N. Florida and Sinclair Hills Drilled Shaft Construction Documents	226
App	endix I	E: US 17 Drilled Shaft 1-4 Construction Documents	265
Apı	endix I	F: 34% Fly Ash (Class F) Model Concrete Mix Design and Mill Certificates	270

List of Tables

Table 2.1 Breakdown of the number of drilled shafts per county	17
Table 3.1 DS-6 concrete mix proportions	23
Table 3.2 OC-13 truck #1 (9 cubic yards) concrete mix proportions	35
Table 3.3 OC-13 truck #2 (9 cubic yards) concrete mix proportions	35
Table 3.4 OC-13 truck #3 (9 cubic yards) concrete mix proportions	36
Table 3.5 OC-13 truck #4 (9 cubic yards) concrete mix proportions	36
Table 3.6 OC-13 truck #5 (9 cubic yards) concrete mix proportions	37
Table 3.7 OC-13 truck #6 (9 cubic yards) concrete mix proportions	37
Table 3.8 OC-13 truck #7 (8 cubic yards) concrete mix proportions	38
Table 3.9 OC-13 truck #8 (4 cubic yards) concrete mix proportions	38
Table 3.10 OC-13 truck #9 (6 cubic yards) concrete mix proportions	39
Table 3.11 OC-13 temperature analysis shaft information	45
Table 3.12 OC-13 radius analysis shaft information	47
Table 3.13 OC-19 truck #1 (9 cubic yards) concrete mix proportions	51
Table 3.14 OC-19 truck #2 (9 cubic yards) concrete mix proportions	51
Table 3.15 OC-19 truck #3 (9 cubic yards) concrete mix proportions	52
Table 3.16 truck #4 (9 cubic yards) concrete mix proportions	52
Table 3.17 OC-19 truck #5 (9 cubic yards) concrete mix proportions	53
Table 3.18 OC-19 truck #6 (7 cubic yards) concrete mix proportions	53
Table 3.19 OC-19 temperature analysis shaft information.	58

Table 3.20 OC-19 radius analysis shaft information.	63
Table 3.21 Summary of ACIP cage temperature measurements.	66
Table 3.22 Average cage to peak to cage temperature differentials for 36-inch elements	69
Table 3.23 Sinclair Hills drilled shaft concrete mix proportions	73
Table 3.24 Sinclair Hills drilled shaft temperature analysis shaft information	79
Table 3.25 Sinclair Hills drilled shaft radius analysis shaft information	82
Table 3.26 Bartow shaft 1-4 truck #1 (9 cubic yards) concrete mix proportions	86
Table 3.27 Bartow shaft 1-4 truck #2 (4 cubic yards) concrete mix proportions	86
Table 3.28 Bartow shaft 1-4 temperature analysis shaft information	90
Table 3.29 Bartow shaft 1-4 radius analysis shaft information.	93
Table 4.1 Mix designs used to create model mix proportions with varying cementitious contents.	96
Table 4.2 Drilled shaft diameter limits for each TCC – 34% fly ash mix.	109
Table 4.3 Drilled shaft diameter limits for each TCC – 60% slag mix.	110
Table 4.4 Drilled shaft diameter limits for each TCC – 100% Type IL cement mix	111

List of Figures

Figure 1.1 Example of a damaged drilled shaft.	1
Figure 1.2 Temperature-induced damage to drilled shaft (courtesy of Chris Harris with R.W. Harris, Inc.)	3
Figure 1.3 Adapted ACI PRC-207.1 definition of mass concrete as a function of equivalent cement content (ECC) of the concrete and minimum dimension.	5
Figure 1.4 Drilled shaft excavation	8
Figure 1.5 Drilled shaft reinforcement cage placement	8
Figure 1.6 Drilled shaft concrete placement.	9
Figure 1.7 Installation of thermal wires to a shaft reinforcing cage at a construction site located on the University of South Florida Tampa Campus	11
Figure 1.8 TIP probe system in use.	12
Figure 1.9 Example of a temperature versus time plot at a discrete drilled shaft depth	13
Figure 1.10 Example of an average drilled shaft temperature profile that includes individual thermal wire data measured via a four-wire installation as well as the average profile resulting from all four wires. This profile represents the basic shape of the shaft	14
Figure 2.1 Plot presenting maximum cage temperature (at time of testing) vs drilled shaft diameter	18
Figure 2.2 Plot presenting maximum cage temperature vs concrete age	19
Figure 2.3 Plot presenting average temperature vs concrete age	20
Figure 2.4 Plot presenting peak average temperature vs concrete age.	21
Figure 3.1 Satellite imagery illustrating the general location of DS-6.	22
Figure 3.2 Installation of thermal wires along the length of the DS-6 reinforcement cage	24
Figure 3.3 Installation of center wire along additional center rebar.	25
Figure 3.4 Fully instrumented DS-6 reinforcement cage ready to be placed for concrete casting.	25
Figure 3.5 Connection of the Thermal Acquisition Port boxes after concrete placement	26
Figure 3.6 DS-6 Temperature Analysis Shaft Information (4/11/21 0232hrs)	27
Figure 3.7 Plot presenting DS-6 cage temperature versus depth data at peak average cage temperature (35 hours into testing).	28

Figure 3.8 Plot presenting DS-6 temperature versus time data at a depth of 39 feet, where peak average cage temperature occurred (35 hours into testing)	29
Figure 3.9 Plot presenting DS-6 center wire temperature versus depth data at the time of peak temperature of the center wire (30 hours into testing).	30
Figure 3.10 Plot presenting DS-6 center wire temperature versus time data at a depth of 16 feet, where peak center wire temperature occurred.	31
Figure 3.11 Plot presenting DS-6 radius versus depth data.	32
Figure 3.12 DS-6 Radius Analysis Shaft Information.	32
Figure 3.13 DS-6 3D radius view.	33
Figure 3.14 Satellite imagery illustrating the general location of OC-13	34
Figure 3.15 Installation of thermal wires along the length of the OC-13 reinforcement cage	40
Figure 3.16 Installation of the center rebar cross bracing for drilled shaft OC-13	40
Figure 3.17 Installation of center thermal wire in OC-13 reinforcement cage	41
Figure 3.18 Installation of the bottom 15 sensors of the center thermal wire in an across-shaft configuration along the bottom rebar cross bracing in OC-13 reinforcement cage	41
Figure 3.19 Fully instrumented OC-13 reinforcement cage ready to be placed for concrete casting.	42
Figure 3.20 Fully instrumented OC-13 reinforcement cage placed in the augered location prior to concrete placement	43
Figure 3.21 Two out of five total OC-13 TAP boxes connected to their respective thermal wires.	43
Figure 3.22 Tremie separation during OC-13 concrete placement	44
Figure 3.23 Plot presenting OC-13 temperature versus time thermal wire data at a depth of 27 feet, where peak average cage temperature occurred. Sensor failures are also present	
at this depth for wire #1	45
Figure 3.24 Plot presenting OC-13 temperature versus depth probe data.	46
Figure 3.25 Plot presenting OC-13 radius versus depth probe data.	47
Figure 3.26 OC-13 3D radius view	48
Figure 3.27 Satellite imagery illustrating the general location of OC-19	49
Figure 3.28 Partially augered location of drilled shaft OC-19 with partial-length casing installed.	50
Figure 3.29 Installation of thermal wires along the length of the OC-19 reinforcement cage	54

Figure 3.30 Installation of the center rebar cross bracing and the bottom 15 sensors of the center thermal wire in an across-shaft configuration along the bottom rebar cross bracing in OC-19 reinforcement cage	55
Figure 3.31 Complete installation of center thermal wire inside OC-19 reinforcement cage.	56
Figure 3.32 Fully instrumented OC-19 reinforcement cage ready to be placed for concrete casting.	56
Figure 3.33 OC-19 thermal sensor layout schematic.	57
Figure 3.34 Plot presenting OC-19 temperature versus depth data at peak average cage temperature (47 hours into testing).	59
Figure 3.35 Plot presenting OC-19 temperature versus time data at a depth of 6 feet, where peak average cage temperature occurred (47 hours into testing)	60
Figure 3.36 Plot presenting OC-19 center wire temperature versus depth data at the time of peak temperature of the center wire (49 hours into testing).	61
Figure 3.37 Plot presenting OC-19 center wire temperature versus time data at a depth of 1 foot, where peak center wire temperature occurred.	62
Figure 3.38 Plot presenting OC-19 data taken from the center wire sensors installed in an across-shaft configuration.	63
Figure 3.39 Plot presenting OC-19 radius versus depth data	64
Figure 3.40 OC-19 3D radius view.	65
Figure 3.41 Typical average cage and center wire temperature profiles.	67
Figure 3.42 Temperature versus depth plot illustrating warmer cage temperatures are observed in the lower half along with smaller cage to core differentials.	68
Figure 3.43 Probable cage position based on the best fit average cage temperature	70
Figure 3.44 Satellite imagery illustrating the general location of the Sinclair Hills drilled shaft	71
Figure 3.45 Partially augered location of Sinclair Hills drilled shaft with partial-length casing installed.	72
Figure 3.46 Installation of thermal wires along the length of the Sinclair Hills drilled shaft reinforcement cage.	74
Figure 3.47 Installation of the rebar cross bracing and the center thermal wire in an across-shaft configuration along the rebar cross bracing.	75
Figure 3.48 Complete installation of center thermal wire inside Sinclair Hills drilled shaft reinforcement cage.	76

Figure 3.49 Fully instrumented Sinclair Hills drilled shaft reinforcement cage ready to be placed for concrete casting	77
Figure 3.50 Sinclair Hills drilled shaft thermal sensor layout schematic.	78
Figure 3.51 Plot presenting Sinclair Hills drilled shaft temperature versus depth data at peak average cage temperature (23 hours into testing)	80
Figure 3.52 Plot presenting Sinclair Hills drilled shaft temperature versus time data at a depth of 4 feet, where peak average cage temperature occurred (23 hours into testing)	81
Figure 3.53 Plot presenting Sinclair Hills drilled shaft data taken from the center wire sensors installed in an across-shaft configuration.	81
Figure 3.54 Plot presenting Sinclair Hills drilled shaft radius versus depth data	83
Figure 3.55 Satellite imagery illustrating the general location of Bartow drilled shaft 1-4	84
Figure 3.56 Partially augered location of Bartow shaft 1-4 with partial-length casing installed.	85
Figure 3.57 Close up view of thermal wire installed at the reinforcement cage with offset return wire.	87
Figure 3.58 Fully instrumented Bartow shaft 1-4 reinforcement cage ready to be placed for concrete casting.	88
Figure 3.59 Bartow shaft 1-4 thermal sensor layout schematic.	89
Figure 3.60 Plot presenting Bartow shaft 1-4 temperature versus depth data at peak average cage temperature (28 hours into testing).	91
Figure 3.61 Plot presenting Bartow shaft 1-4 temperature versus time data at a depth of 4 feet, where peak average cage temperature occurred (28 hours into testing)	92
Figure 3.62 Plot presenting Bartow shaft 1-4 temperature gradient versus depth	93
Figure 3.63 Plot presenting Bartow shaft 1-4 radius versus depth data	94
Figure 4.1 Model verification using OC-19 measured data	97
Figure 4.2 Three-dimensional illustration of N-S and E-W across-shaft temperature distributions overlayed on model temperature distribution mesh	98
Figure 4.3 Peak temperature (°F) contour plot for 34% fly ash mix.	99
Figure 4.4 Peak temperature (°F) contour plot for 60% slag mix	. 100
Figure 4.5 Peak temperature (°F) contour plot for 100% Portland cement mix	. 101
Figure 4.6 Edge-to-core differential temperature (°F) contour plot for 34% fly ash mix	. 102
Figure 4.7 Edge-to-core differential temperature (°F) contour plot for 60% slag mix	103

Figure 4.8 Edge-to-core differential temperature (°F) contour plot for 100% Portland cement mix	104
Figure 4.9 Cage-to-core differential temperature (°F) contour plot for 34% fly ash mix	105
Figure 4.10 Cage-to-core differential temperature (°F) contour plot for 60% slag mix	106
Figure 4.11 Cage-to-core differential temperature (°F) contour plot for 100% Portland cement mix	107
Figure 4.12 Model edge-to-core differential temperature (°F) versus shaft radius for 34% fly ash mix.	112
Figure 4.13 Model peak temperature (°F) versus shaft radius for 34% fly ash mix	113
Figure 4.14 Model edge-to-core differential temperature (°F) versus shaft radius for 60% slag mix	113
Figure 4.15 Model peak temperature (°F) versus shaft radius for 60% slag mix	114
Figure 4.16 Model edge-to-core differential temperature (°F) versus shaft radius for 100% Type IL cement mix.	115
Figure 4.17 Model peak temperature (°F) versus shaft radius for 100% Type IL cement mix.	115
Figure 4.18 a ₂ , a ₁ , and a ₀ regression coefficients versus cementitious contents for 34% fly ash mix	116
Figure 4.19 a ₅ , a ₄ , and a ₃ regression coefficients versus cementitious contents for 34% fly ash mix	117
Figure 4.20 b ₂ , b ₁ , and b ₀ regression coefficients versus cementitious contents for 60% slag mix.	118
Figure 4.21 b ₅ , b ₄ , and b ₃ regression coefficients versus cementitious contents for 60% slag mix.	119
Figure 4.22 c ₂ , c ₁ , and c ₀ regression coefficients versus cementitious contents for 100% Type IL cement mix	120
Figure 4.23 c ₅ , c ₄ , and c ₃ regression coefficients versus cementitious contents for 100% Type IL cement mix	121
Figure 4.24 Model cage-to-core differential temperature (°F) versus reinforcement cage radius for 34% fly ash mix	123
Figure 4.25 Model cage-to-core differential temperature (°F) versus reinforcement cage radius for 60% slag mix.	124
Figure 4.26 Model cage-to-core differential temperature (°F) versus reinforcement cage radius for 100% Type IL cement mix.	125

Figure 4.27 a ₈ , a ₇ , and a ₆ regression coefficients versus cementitious contents for 34% fly ash mix	126
Figure 4.28 b ₈ , b ₇ , and b ₆ regression coefficients versus cementitious contents for 60% slag mix.	127
Figure 4.29 c ₈ , c ₇ , and c ₆ regression coefficients versus cementitious contents for 100% Type IL cement mix.	128
Figure 4.30 Modeled temperature distributions over time for a 6-foot shaft using the OC-19 concrete mix design.	130
Figure 4.31 Plot presenting OC-19 data taken from the center wire sensors installed in an across-shaft configuration.	131
Figure 4.32 Thermal integrity probe test performed on Bartow shaft 1-4 with gyroscopic sensor.	132
Figure 4.33 Fully instrumented Bartow shaft 1-4 reinforcement cage with annotated access tube numbers.	133
Figure 4.34 Gyro probe (showing 2 of 4 orthogonal infrared thermal sensors) used to test Bartow shaft 1-4.	134
Figure 4.35 Plot presenting thermal probe spin test data: internal tube temperature versus probe rotation measurement for access tube #3 collected two days post concreting	135
Figure 4.36 Plot presenting thermal probe spin test data: internal tube temperature versus radial position within the access tube.	136
Figure 4.37 Temperature gradient comparison between thermal wire method and probe method	137
Figure 4.38 Plot presenting probe data collected from each steel access tube with corresponding calculated core and differential temperatures versus depth.	138
Figure 5.1 Plot presenting edge-to-core differential temperatures calculated from the database of drilled shafts with previously collected thermal data versus shaft diameter organized by TCC.	142
Figure 5.2 Plot presenting peak temperatures calculated from the database of drilled shafts with previously collected thermal data versus shaft diameter organized by TCC	143
Figure 5.3 Disparate temperature profiles.	144
Figure 5.4 Comparison between model data, measured OC-19 data, and measured HEFT II data.	145
Figure A.1 Genshaft Honors College concrete mix design submittal page 1	151
Figure A.2 Genshaft Honors College concrete mix design submittal page 2	152

igure A.3 Genshaft Honors College concrete mix design submittal page 3	153
igure A.4 Genshaft Honors College concrete mix design submittal page 4	154
igure A.5 Genshaft Honors College concrete mix design submittal page 5	155
igure A.6 Genshaft Honors College certification data submittal page 1	156
igure A.7 Genshaft Honors College certification data submittal page 2	157
igure A.8 Genshaft Honors College certification data submittal page 3	158
igure A.9 Genshaft Honors College certification data submittal page 4	159
igure A.10 Genshaft Honors College certification data submittal page 5	160
igure A.11 Genshaft Honors College certification data submittal page 6	161
igure A.12 Genshaft Honors College certification data submittal page 7	162
igure A.13 Genshaft Honors College certification data submittal page 8	163
igure A.14 Genshaft Honors College certification data submittal page 9.	164
igure A.15 Genshaft Honors College certification data submittal page 10	165
igure A.16 Genshaft Honors College certification data submittal page 11	166
igure A.17 Genshaft Honors College certification data submittal page 12	167
igure A.18 Genshaft Honors College certification data submittal page 13	168
igure A.19 Genshaft Honors College certification data submittal page 14	169
igure A.20 Genshaft Honors College certification data submittal page 15	170
igure A.21 Genshaft Honors College certification data submittal page 16	171
igure A.22 Genshaft Honors College certification data submittal page 17	172
igure A.23 Genshaft Honors College certification data submittal page 18	173
igure A.24 Genshaft Honors College certification data submittal page 19.	174
igure A.25 Genshaft Honors College certification data submittal page 20.	175
igure A.26 Genshaft Honors College certification data submittal page 21	176
igure A.27 Genshaft Honors College certification data submittal page 22.	177
igure A.28 Genshaft Honors College certification data submittal page 23.	178
igure A.29 Genshaft Honors College certification data submittal page 24.	179
igure A.30 Genshaft Honors College certification data submittal page 25.	180
igure A.31 Genshaft Honors College certification data submittal page 26.	181
igure A 32. Genshaft Honors College certification data submittal page 27	182

Figure A.33 Genshaft Honors College certification data submittal page 28	183
Figure A.34 Genshaft Honors College certification data submittal page 29.	184
Figure A.35 Genshaft Honors College certification data submittal page 30.	185
Figure A.36 Genshaft Honors College certification data submittal page 31.	186
Figure A.37 Genshaft Honors College certification data submittal page 32.	187
Figure A.38 Genshaft Honors College certification data submittal page 33.	188
Figure A.39 Genshaft Honors College certification data submittal page 34.	189
Figure A.40 Genshaft Honors College certification data submittal page 35.	190
Figure A.41 Genshaft Honors College certification data submittal page 36.	191
Figure A.42 Genshaft Honors College certification data submittal page 37.	192
Figure A.43 Genshaft Honors College certification data submittal page 38.	193
Figure A.44 Genshaft Honors College certification data submittal page 39.	194
Figure A.45 Genshaft Honors College certification data submittal page 40.	195
Figure A.46 Genshaft Honors College certification data submittal page 41.	196
Figure A.47 Genshaft Honors College certification data submittal page 42.	197
Figure A.48 Genshaft Honors College certification data submittal page 43.	198
Figure A.49 Genshaft Honors College certification data submittal page 44.	199
Figure A.50 Genshaft Honors College concrete delivery ticket 1.	200
Figure A.51 Genshaft Honors College concrete delivery ticket 2.	201
Figure A.52 Genshaft Honors College concrete delivery ticket 3.	202
Figure A.53 Genshaft Honors College concrete delivery ticket 4.	203
Figure A.54 Genshaft Honors College concrete delivery ticket 5.	204
Figure A.55 Genshaft Honors College concrete delivery ticket 6.	205
Figure B.1 OC-13 concrete delivery ticket 1.	206
Figure B.2 OC-13 concrete delivery ticket 2.	207
Figure B.3 OC-13 concrete delivery ticket 3.	208
Figure B.4 OC-13 concrete delivery ticket 4.	209
Figure B.5 OC-13 concrete delivery ticket 5.	210
Figure B.6 OC-13 concrete delivery ticket 6.	211
Figure B 7 OC-13 concrete delivery ticket 7	212

Figure B.8 OC-13 concrete delivery ticket 8.	213
Figure B.9 OC-13 concrete delivery ticket 9.	214
Figure B.10 OC-13 Type IL cement Sumterville Plant mill certificate	215
Figure B.11 OC-13 Type IL cement Branford Plant mill certificate	216
Figure B.12 OC-13 slag mill certificate.	217
Figure C.1 OC-19 concrete delivery ticket 1	218
Figure C.2 OC-19 concrete delivery ticket 2.	219
Figure C.3 OC-19 concrete delivery ticket 3.	220
Figure C.4 OC-19 concrete delivery ticket 4.	221
Figure C.5 OC-19 concrete delivery ticket 5.	222
Figure C.6 OC-19 concrete delivery ticket 6.	223
Figure C.7 OC-19 Type IL cement mill certificate	224
Figure C.8 OC-19 slag mill certificate.	225
Figure D.1 Sinclair Hills drilled shaft concrete delivery ticket 1.	226
Figure D.2 Sinclair Hills drilled shaft concrete delivery ticket 2.	227
Figure D.3 Sinclair Hills drilled shaft concrete delivery ticket 3.	228
Figure D.4 Sinclair Hills drilled shaft concrete delivery ticket 4.	229
Figure D.5 Sinclair Hills drilled shaft concrete delivery ticket 5.	230
Figure D.6 Sinclair Hills drilled shaft concrete delivery ticket 6.	231
Figure D.7 Sinclair Hills drilled shaft certification data submittal page 1.	232
Figure D.8 Sinclair Hills drilled shaft certification data submittal page 2.	233
Figure D.9 Sinclair Hills drilled shaft certification data submittal page 3.	234
Figure D.10 Sinclair Hills drilled shaft certification data submittal page 4.	235
Figure D.11 Sinclair Hills drilled shaft certification data submittal page 5.	236
Figure D.12 Sinclair Hills drilled shaft certification data submittal page 6.	237
Figure D.13 Sinclair Hills drilled shaft certification data submittal page 7.	238
Figure D.14 Sinclair Hills drilled shaft certification data submittal page 8.	239
Figure D.15 Sinclair Hills drilled shaft certification data submittal page 9.	240
Figure D.16 Sinclair Hills drilled shaft certification data submittal page 10.	241
Figure D.17 Sinclair Hills drilled shaft certification data submittal page 11.	242

Figure D.18 Sinclair Hills drilled shaft certification data submittal page 12.	. 243
Figure D.19 Sinclair Hills drilled shaft certification data submittal page 13.	. 244
Figure D.20 Sinclair Hills drilled shaft certification data submittal page 14.	. 245
Figure D.21 Sinclair Hills drilled shaft certification data submittal page 15.	. 246
Figure D.22 Sinclair Hills drilled shaft certification data submittal page 16.	. 247
Figure D.23 Sinclair Hills drilled shaft certification data submittal page 17.	. 248
Figure D.24 Sinclair Hills drilled shaft certification data submittal page 18.	. 249
Figure D.25 Sinclair Hills drilled shaft certification data submittal page 19.	. 250
Figure D.26 Sinclair Hills drilled shaft certification data submittal page 20.	. 251
Figure D.27 Sinclair Hills drilled shaft certification data submittal page 21.	. 252
Figure D.28 Sinclair Hills drilled shaft certification data submittal page 22	. 253
Figure D.29 Sinclair Hills drilled shaft certification data submittal page 23.	. 254
Figure D.30 Sinclair Hills drilled shaft certification data submittal page 24.	. 255
Figure D.31 Sinclair Hills drilled shaft certification data submittal page 25.	. 256
Figure D.32 Sinclair Hills drilled shaft certification data submittal page 26.	. 257
Figure D.33 Sinclair Hills drilled shaft certification data submittal page 27.	. 258
Figure D.34 Sinclair Hills drilled shaft certification data submittal page 28.	. 259
Figure D.35 Sinclair Hills drilled shaft certification data submittal page 29.	. 260
Figure D.36 Sinclair Hills drilled shaft certification data submittal page 30.	. 261
Figure D.37 Sinclair Hills drilled shaft certification data submittal page 31.	. 262
Figure D.38 Sinclair Hills drilled shaft certification data submittal page 32.	. 263
Figure D.39 Sinclair Hills drilled shaft certification data submittal page 33.	. 264
Figure E.1 Bartow drilled shaft 1-4 concrete delivery ticket 1	. 265
Figure E.2 Bartow drilled shaft 1-4 concrete delivery ticket 2	. 266
Figure E.3 Bartow drilled shaft 1-4 Type IL cement mill certificate.	. 267
Figure E.4 Bartow drilled shaft 1-4 Lehigh slag mill certificate page 1	. 268
Figure E.5 Bartow drilled shaft 1-4 Lehigh slag mill certificate page 2	. 269
Figure F.1 34% Fly Ash Model concrete mix design.	. 270
Figure F.2 34% Fly Ash Model mill certificate for Class F Fly Ash.	. 271
Figure F.3 34% Fly Ash Model mill certificate for Type II Portland Cement.	. 272

Chapter One: Introduction

The internal temperature of concrete rises during curing due to heat energy production resulting from the hydration of cementitious materials; however concrete quality can degrade if the internal temperature becomes too hot. The internal temperature of a concrete element is capable of exceeding safe temperature limits when a concrete element is very large, or the concrete mix design includes substantial quantities of cementitious materials. In practice, these conditions should be avoided by implementing temperature-control measures, however recent studies conducted at the University of South Florida have shown drilled shafts commonly exceed temperature limitations set by the American Concrete Institute. When these temperature limitations are exceeded, the risk for temperature-related durability and structural issues increases. Issues stemming from increased curing temperatures include severe surface cracking, delayed expansion of cement products after concrete hardening, and reduction in concrete strength. Figure 1.1 shows an example of a shaft that exhibited one or all of the possible high temperature induced problems; adjacent shafts were constructed to which the structural loads were transferred via the beam shown. To date, there is no design guide to predict how hot a drilled shaft will get or quality assurance method to confirm temperature limits have not been exceeded in the field.

Figure 1.1 Example of a damaged drilled shaft. [This is a photograph of a drilled shaft exhibiting severe cracking and spalling.]

The goal of this study was to develop and implement methods to predict peak and differential temperatures of drilled shafts to determine if unsafe temperature conditions may arise for a given

design. This study was divided into three methods of investigation: (1) cataloging and examining a database of previously collected thermal data from drilled shafts, (2) collecting new thermal data using specialized field-testing devices in specialized configurations, and (3) thermal modeling based on concrete mixes commonly used in drilled shaft construction.

1.1 Objective Statement

The objectives of this research were multifold: (1) assess previously collected data to determine if shafts have been exceeding FDOT and/or ACI temperature limits, (2) record temperature measurements in newly constructed drilled shafts to determine temperature distribution and evolution patterns during curing, (3) build and calibrate numerical models of drilled shaft temperature distributions over time, (4) develop design aids to predict peak and differential temperatures of drilled shafts, and (5) explore the possibility of expanding existing quality assurance methods to confirm temperature limits are not exceeded post construction.

1.2 Background

The following provides a brief discussion of heat energy production that occurs during concrete curing (heat of hydration), mass concrete and mass concrete effects, mass concrete specifications, drilled shaft construction, as well as quality assurance and quality control of drilled shafts.

1.2.1 Heat of Hydration

Curing concrete produces heat energy that in turn elevates the internal temperature of the concrete. Energy production is the byproduct of exothermic chemical reactions that occur as cementitious materials hydrate. The amount of energy released is directly related to the degree of hydration, or the number of reactions that have already taken place (Johnson, 2017). Heat energy production is a function of both concrete element size (total volume) and concrete mix design, where higher strength concretes use more cementitious materials, and these materials have a wide range of contributing components. The parameters of interest include cementitious material content, cement chemistry, supplementary cementitious material (SCM) chemistry, cementitious material fineness, water-to-cement ratio, SCM-to-Portland cement ratio, and chemical admixtures. The parameters affect both how much and how quickly the heat energy is produced.

1.2.2 Concrete and Mass Concrete Effects

When large amounts of cementitious materials are used in a concrete mix design or when the concrete elements are of a massive size, the internal temperature can exceed safe temperature limits rendering the concrete weaker and/or less durable (ACI Committee 207, 2007). This condition is termed mass concrete. Historically, mass concrete has been defined by physical dimensions with the intent of identifying when differential temperatures may induce early-onset cracking leading to reduced service life. In recent years, specifications have identified temperature thresholds for both differential and peak temperatures, or performance-based criteria. The research behind these

performance-based criteria also provides insights into what damage looks like as a result of exceeding these temperature thresholds.

Exceeding temperature limits has the potential to result in concrete elements exhibiting damage similar to Figure 1.2. Historically, high temperature concrete was only observed in structures too large to dissipate the increase in temperature to the surrounding environment and was given the term mass concrete. Today, high temperatures have been shown to occur in elements as small as 30 inches in diameter; this suggests the term mass concrete is a misnomer as an element does not need to be physically massive to create excessively high temperatures as the concrete cures.

Figure 1.2 Temperature-induced damage to drilled shaft (courtesy of Chris Harris with R.W. Harris, Inc.).

[This is a detail photograph of a drilled shaft exhibiting large surface cracks.]

1.2.3 Mass Concrete Specifications

Specifications providing guidance for mass concrete considerations are primarily published by the American Concrete Institute (ACI). The Florida Department of Transportation (FDOT) also provides guidance for projects located within the state of Florida. ACI offers a number of specifications that discuss various temperature limitations as well as specific definitions for mass concrete. These specifications include:

- ACI CT-21: Concrete Terminology
- ACI 201.2R-16: Guide to Durable Concrete

- ACI 224R-01: Control of Cracking in Concrete Structures
- ACI PRC-207.1-21: Mass Concrete Guide
- ACI 207.2R-07: Report on Thermal and Volume Change Effects on Cracking of Mass Concrete
- ACI 301-16: Specifications for Structural Concrete
- ACI 308R-16: Guide to External Curing of Concrete

ACI Concrete Terminology (ACI CT) and Specifications for Structural Concrete (ACI 301) define the term mass concrete as, "any volume of structural concrete in which a combination of dimensions of the member being cast, the boundary conditions, the characteristics of the concrete mixture, and the ambient conditions can lead to undesirable thermal stresses, cracking, deleterious chemical reactions, or reduction in the long-term strength as a result of elevated concrete temperature due to heat from hydration." ACI PRC-207.1 also references the same definition but notes, "there is currently no universally accepted definition for mass concrete based on specific characteristics of concrete or placements that require control of temperatures and temperature differences" (ACI, 2021; ACI Committee 207, 2021; ACI Committee 301, 2016).

The Mass Concrete Guide (ACI Committee 207, 2021) uses an equivalent cement content (ECC) of the concrete and the minimum dimension of an element "to define mass concrete as a function of the primary influencers" Figure 1.3 shows red, green and yellow fields corresponding to good, bad, and borderline expected temperatures, respectively, as a function of ECC and concrete element size. It does not indicate what criterion or criteria were used to define these thresholds. It should further be noted that ACI 224R (2001) specifically calls out "concrete dams, powerplants, bridge piers, and other large structural elements" as "mass concrete structures." This specification additionally references a now-superseded definition of mass concrete from ACI 116R (2000) which reads, "any volume of concrete with dimensions large enough to require that measures be taken to cope with generation of heat from hydration of the cement and attendant volume change to minimize cracking."

ACI 308R (2016) makes mention of specific structures most frequently qualifying as mass concrete. These structures include "piers, abutments, dams, heavy footings, and similar massive construction." It then asserts, "the impact of temperature rise and thermal gradients should be considered in all concrete, whether the concrete is reinforced or not."

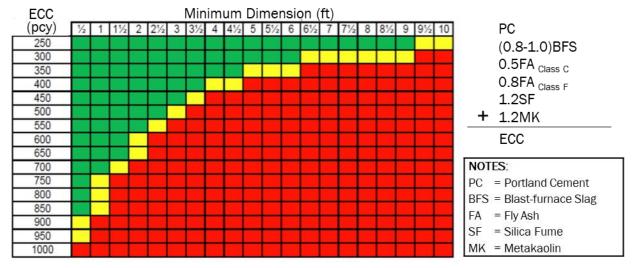


Figure 1.3 Adapted ACI PRC-207.1 definition of mass concrete as a function of equivalent cement content (ECC) of the concrete and minimum dimension.

[This figure is essentially a table where across the top of the table are twenty columns with headings showing minimum dimensions of any concrete element to be considered where the values range from 0.5ft to 10ft in increments of 0.5ft. Down the left side of the table is a listing of 16 equivalent cement contents in units of pounds per cubic yard ranging from 250 to 1000pcy in increments of 50pcy. In the field of the table each cell is colored red, green, or yellow denoting, bad, good, and borderline, respectively, when considering if a concrete element might present with mass concrete problems. Lastly, the figure has an equivalent cement content calculator to the right of the table where slag, fly ash, silica fume, and metakaolin are given multipliers of 0.8 to 1.0, 0.5 or 0.8, 1.2, and 1.2, respectively, to compute the Portland cement equivalent.]

Two temperature limitations exist for curing concrete: differential temperature and maximum concrete temperature, or peak temperature. ACI 201.2R (2016) recommends to not exceed 158°F to minimize the risk of negatively impacting concrete durability as a result of delayed ettringite formation (DEF) reactions. This is a type of sulfate attack that damages cured concrete due to the expansion of cement hydration products during repeated wetting and drying and typically only occurs in concrete that has been exposed to temperatures in excess of 158°F while curing (ACI, 2021). Table 6.2.2.2 in ACI 201 (2016), as well as Table 3.10 in ACI 308R (2016), further provide conditions to minimize, but not eliminate, risk of expansion when temperatures are between 158°F and 185°F. Per both ACI 201.2R Table 6.2.2.2 (2016) and ACI 308R Table 3.10 (2016), one of the following conditions excerpted below may be used to achieve this:

- 1. Portland cement meeting requirements of ASTM C150/150M moderate or high sulfate-resisting and low-alkali cement with a fineness value less than or equal to 430 m3/kg
- 2. Portland cement with a 1-day mortar strength less than or equal to 2850 psi (20 MPa)
- 3. Any Portland cement meeting requirements of ASTM C150/150M in combination with the following proportions of pozzolan or slag cement:
 - a. Greater than or equal to 25% fly ash meeting the requirements of ASTM C618 for Class F fly ash

- b. Greater than or equal to 35% fly ash meeting the requirements of ASTM C618 for Class C fly ash
- c. Greater than or equal to 35% slag cement meeting the requirements of ASTM C989/C989M
- d. Greater than or equal to 5% silica fume meeting the requirements of ASTM C1240 in combination with at least 25% slag cement
- e. Greater than or equal to 5% silica fume meeting the requirements of ASTM C1240 in combination with at least 20% Class F fly ash
- f. Greater than or equal to 10% metakaolin meeting the requirements of ASTM C618
- 4. An ASTM C595/C595M or ASTM C1157/C1157M blended hydraulic cement with the same pozzolan or slag cement content as listed in Item 3

Under no circumstances should internal concrete temperature exceed 185°F (ACI Committee 201, 2016; ACI Committee 308, 2016).

Regarding differential temperature, ACI 301 (2016) states that the maximum temperature differential between the center of an element and the surface "shall not exceed 35°F." For marine structures involving thick sections and rather high cement factors to achieve appropriate in-place strengths before exposure to sea water, ACI 201.2R (2016) also recommends treating these structures as "mass concrete in which the effect of heat of hydration is considered." When these conditions are present, ACI 201.2R (2016) states that recommendations in ACI 207.1R, ACI 207.2R, and ACI 224R apply. Similarly, ACI 308.R (2016) states that temperature rise and gradient issues are "exacerbated where high-strength and high cementitious-materials contents are required."

For projects located in the state of Florida, the specifications discussing mass concrete considerations published by the FDOT include:

- Standard Specifications for Road and Bridge Construction
- Structures Design Guidelines

FDOT size-based guidelines for physical element dimensions can be contradictory. In the state of Florida where differential and peak temperatures are limited to 35°F and 180°F, respectively, drilled shafts are not evaluated for potential temperature issues when used to support miscellaneous structures, regardless of size, which may unintentionally lead to reduced durability/longevity:

346-3.3 Mass Concrete "Mass concrete control provisions are not required for drilled shafts supporting sign, signal, lighting or intelligent transportation (ITS) structures." FDOT Standard Specifications for Road and Bridge Construction (2019a)

In the FDOT Structures Design Guidelines, drilled shafts have a minimum diameter limitation of 6 feet before being considered mass concrete:

1.4.4 Mass Concrete C.2 "All drilled shafts with design diameters greater than 6 feet shall be designated as mass concrete." FDOT Structures Design Guidelines (2019b)

The same specification, however, states:

"... When the minimum dimension of the concrete exceeds 3 feet and the ratio of volume of concrete to the surface area is greater than 1 foot, provide for mass concrete." FDOT Structures Design Guidelines (2019b) However, drilled shafts are excluded from consideration in the latest version (2023).

This criterion would then include shafts as small as 4 feet in diameter, which have been shown in some instances to exceed mass concrete temperature thresholds. The current use of excess cementitious materials to promote high early strengths in the field further aggravates the situation by increasing the likelihood of inducing core temperatures higher than 180°F and causing differential temperatures that exceed 35°F. A study in 2007 (Mullins & Kranc, 2007) showed shafts as small as 48 inches in diameter can exceed both differential and peak temperature limits. More recently in 2020, augered cast-in-place piles as small as 30 inches in diameter also exceeded both differential and peak temperature limits (Mullins, 2021). This suggests that the mass concrete definitions dependent on physical dimensions have become unreliable, especially in cases where high-early-strength or high-performance concretes are used. Therefore, with these specifications, one can expect some drilled shafts built in Florida to have poor durability.

1.2.4 Drilled Shaft Construction

Drilled shafts are cast-in-place, deep foundational elements. Drilled shaft lengths can be upwards of 300 feet with diameters anywhere from 2 to 30 feet (Gunaratne, 2014). As a cast-in-place element, prior to concrete placement, an excavation is first completed using an auger with a diameter of the shaft that will be constructed (Figure 1.4). A steel casing is also used and can be partial or full length, temporary or permanent. A slurry material consisting of either bentonite or polymer is used to stabilize the borehole when full length casing is not used and the soil is inherently unstable. This includes high water table conditions. Once the excavation is complete, a reinforcement cage is lowered into place within the excavation (Figure 1.5), and concrete is placed. During concreting, a tremie or pump truck slick line is lowered down to the bottom of the excavation and the concrete level rises from the bottom up displacing the slurry. In the example presented in Figure 1.6, the casing was temporary and was removed near the end of concrete

placement (Figure 1.6, middle). An above ground form was then added to complete concreting and bring the top of shaft to the finished above-grade surface (Figure 1.6, right).

Figure 1.4 Drilled shaft excavation.

[This is two photographs showing the excavation process for a drilled shaft foundation. The photo on the left shows the drilled shaft site with the staged reinforcement cage, partial excavation with a steel casing installed, and a drilled rig in operation. The photo on the right is a more detailed photo of the partial excavation with installed steel casing and drill rig emptying the auger.]

Figure 1.5 Drilled shaft reinforcement cage placement.

[This is a series of three photos showing the installation of the reinforcement cage for a drilled shaft foundation. The photo on the left shows the reinforcement cage alignment with the excavation; the center photo shows the reinforcement cage partially lowered into the excavation; and the photo on the right shows the reinforcement cage lowered into the excavations roughly two-thirds of the way.]

Figure 1.6 Drilled shaft concrete placement.

[This is a series of three photos showing drilled shaft concrete placement. The photo on the left is a detail photo of the drilled shaft excavation with visible slurry and a concrete delivery truck actively pouring concrete into the tremie; the center photo shows the drilled shaft after concrete was overpoured and the temporary casing was removed; and the photo on the right shows the drilled shaft after a beauty ring was installed and surrounding area was cleaned with finishing concrete being placed.]

The method of construction always requires at least a temporary surface casing (if not full length) "from at least 1 foot above the ground surface to at least 1-1/2 shaft diameters below the ground surface to prevent caving of the surface soils and to aid in maintaining shaft position and alignment" (FDOT 2023 Standard Specifications, 455-15.1.3).

Surface casings described above are virtually always larger than the design diameter which brings about the term as-built diameter. This term is referenced in Section 346-4.2 (FDOT 2023) where "instrumentation and temperature monitoring are not required for miscellaneous drilled shafts supporting sign, signal, lighting or Intelligent Transportation System (ITS) structures when the as built diameter is six feet or less, and the total cementitious materials content of the concrete mix design is less than or equal to 752 pounds per cubic yard." This now puts some oversight on shafts supporting miscellaneous structures.

For the full-length temporary casing method, the outer diameter of the casing can be the same as the design diameter of the shaft; hence, the as-built diameter is the design diameter in that case. The Structures Design Guidelines Section 1.4.4-C.2 references the design diameter and not the as-built diameter: "All drilled shafts with design diameters greater than 6-feet shall be designated as mass concrete." This could lead to larger elements that do not meet the as-built dimension limit; the worst case, however, can only be 12 inch larger than the design diameter per Section 455-15.1.3 "Do not use a temporary casing larger than 12 inches of the shaft diameter" (FDOT 2023 Standard Specifications).

1.2.5 Drilled Shaft Quality Assurance and Quality Control

As a below-grade, cast-in-place concrete structural element, the quality assurance of drilled shafts is just as important as above ground elements but more difficult to guarantee. Various methods to assess structural integrity of the fully cured concrete have been developed, such as gamma gamma logging (GGL) and crosshole sonic logging (CSL); another test method takes advantage of the temperature rise from heat of hydration that takes place during concrete curing. Taking temperature measurements during curing is non-destructive and can be used to evaluate both concrete integrity and homogeneity as well as reinforcement cage location relative to the true center of cast-in-place concrete foundation elements such as bored piles, drilled shafts, continuous flight auger piles, barrettes, dams, or diaphragm walls (ASTM, 2014). ASTM D7949 (2014) designates this test as Thermal Integrity Profiling of Concrete Deep Foundations. Thermal Integrity Profiling (TIP) involves recording temperature measurements along the length of a drilled shaft at discrete locations around the reinforcement cage via one of two measurement techniques: Method A - use of a thermal probe lowered into access tubes, or Method B - multiple embedded thermal sensors. The probe system is fitted with four laterally directed, orthogonally aligned infrared thermal sensors and measures access tube wall temperatures in all directions as it is lowered into the shaft at access tube locations. The thermal wire system includes cables fitted with evenly spaced sensors and samples thermal data from each installed wire at time intervals specified by the user, typically every 15 minutes. The advantage of probe systems is that the device is reusable; the advantage of thermal wires (one-time use) is the ability to take measurements continuously with time. Figure 1.7 shows thermal wires being tied to a shaft reinforcing cage at one of the studied sites. Figure 1.8 shows a TIP probe system in use. The data collected from both techniques results in a continuous vertical temperature profile. A combination of several physical, chemical, and molecular principles is incorporated into this type of evaluation and explains the mechanisms behind heat production of the curing concrete, heat diffusion into the surrounding soil, and the temperature distribution created by an ideally shaped drilled shaft (Mullins, 2010).

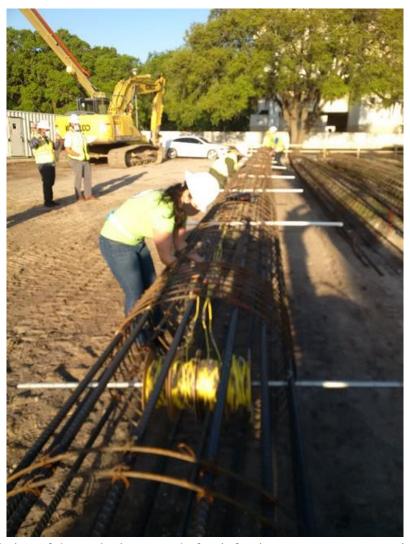


Figure 1.7 Installation of thermal wires to a shaft reinforcing cage at a construction site located on the University of South Florida Tampa Campus.

[This is a photograph of a project site located on the University of South Florida Tampa Campus primarily showing three graduate students installing thermal wires on a drilled shaft reinforcing cage. There are eight rods evenly spaced down the length of the reinforcement cage and are set through the center to allow for easy access to the thermal wire throughout the length of the reinforcement cage. The first rod in the foreground also holds the thermal wire spool.]

Figure 1.8 TIP probe system in use.

[This is a photograph of a project site showing a recently installed drilled shaft with access tubes coming up out of the top of the shaft. The principal investigator is in the process of using the Thermal Integrity Profiling (TIP) probe system.]

Analysis of the collected time, temperature, and depth data includes creating shaft temperature profiles over time for given depths, as well as plotting all temperature data versus depth (see Figures 1.8 and 1.9). The two immediate benefits of the thermal integrity technology are: (1) determination of the as-built shape of the shaft and provided concrete cover and (2) verification that reinforcing steel is appropriately centered in the concrete (Johnson, 2014; Johnson, 2016; Mullins, 2010). In some cases, routine thermal integrity tests (Figure 1.10 [left]) have discovered unsafe temperatures (>>158°F) at the cage location which raises the question: how hot did the center of the shaft get? Figure 1.10, left, presents routine data collected from a drilled shaft as part of an FDOT project (HEFT II) in June 2018 in Miami, Florida.

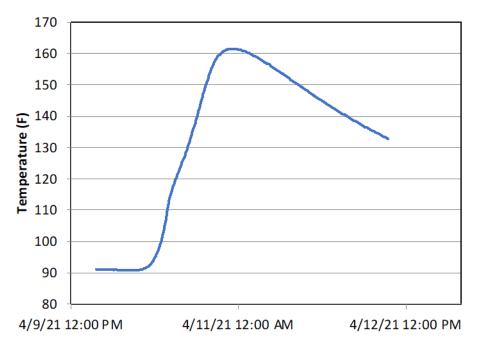


Figure 1.9 Example of a temperature versus time plot at a discrete drilled shaft depth. [This figure is an example plot of average drilled shaft temperature measurements taken at the reinforcement cage versus time. The time period these measurements were taken spans three days (April 9, 2021 to April 12, 2021), and the temperature measurements start at just over 90°F, rise steeply to just over 160°F on April 11, 2021 then gradually fall to just over 130°F when data recording ended on April 12, 2021 12:00 PM.]

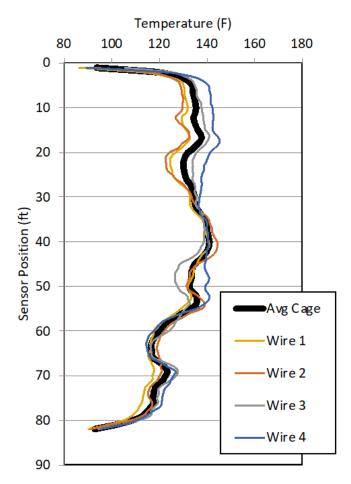


Figure 1.10 Example of an average drilled shaft temperature profile that includes individual thermal wire data measured via a four-wire installation as well as the average profile resulting from all four wires. This profile represents the basic shape of the shaft.

[This figure is an example plot of an average drilled shaft temperature profile that includes the individual thermal wire data measured via a four-wire installation at the reinforcement cage, as well as the average profile resulting from all four wires. The y-axis of the plot illustrates the sensor position or elevation with a zero elevation at the top. The x-axis is the measured temperature data. This profile represents the basic shape of the drilled shaft.]

1.3 Organization of the Report

This report is divided into five ensuing chapters that track the various tasks performed in the process of determining peak temperatures in drilled shafts excluded from mass concrete consideration in current specifications. Chapter 2 discusses the collection and cataloging of thermal integrity data from previous testing. Chapter 3 presents newly collected thermal data from five drilled shafts constructed in or near the Tampa Bay area with a focus on shaft core temperature distributions. Along with temperature data, environmental conditions during construction, concrete mix design, and mill certificates associated with each drilled shaft were also collected,

cataloged, and presented in this chapter. Chapter 4 details the modeling approach and verification used to generate 330 model temperature distributions over a time period of 200 hours; 110 models for three unique concrete mix designs. Temperature distributions are presented as contour plots dependent on drilled shaft diameter and total cementitious content. This chapter also describes the analysis methods used to develop ten closed-form equations to be used to predict peak and differential temperatures of drilled shafts either at the design phase or as a quality assurance method to confirm temperature limits have not been exceeded in the field. Chapter 5 provides a summary and discussion with recommendations.

Chapter Two: Obtain Previously Collected Data

This chapter highlights the cataloging of previously collected thermal integrity profiles, corresponding project information including site location, shaft size, thermal profile data, mix design, date of testing, and hydration time/age when tested. A summary of the profiles and project information catalogued as well as an exploratory analysis of this catalogued information and relevant discussion of the results.

2.1 Introduction

Three databases of drilled shaft thermal data and available project information were mined for relevant information to shaft internal temperatures. The first database contained data from 118 drilled shafts evaluated as part of the Lee Roy Selmon Expressway Connector project in Hillsborough County, Florida. The second database contained data from 232 drilled shafts evaluated as part of the Lee Roy Selmon Expressway Re-decking project in Hillsborough County, Florida. Finally, the third database was obtained from local engineering consultants, which contained 207 project folders, many containing datasets for multiple drilled shafts.

In total, this phase of data collection included thermal integrity information from 662 drilled shafts. Included with the temperature data was project and shaft dimension information including:

- Drilled shaft location by county
- Thermal testing date
- Concrete age at time of testing
- Maximum drilled shaft temperature measured at the cage as reported in readily available testing results documents or deliverable reports
- Average drilled shaft temperature as reported in readily available testing results documents or deliverable reports
- Reinforcement cage diameter as reported in readily available testing results documents or deliverable reports
- Inventory of file contents with specific attention to availability of raw thermal data files, testing method used (wire or probe), number of wires or tubes tested in each shaft, availability of results documents or deliverable reports, availability of project photos or videos, availability of mix tickets, concrete supplier (if known), availability of mill certificates, availability of Standard Penetration Test (SPT) borings, availability of FDOT drilled shaft logs, and whether any other integrity reports or analysis spreadsheets were available [e.g. cross sonic logging (CSL) or gamma-gamma logging (GGL) analysis].

2.2 Summary of Catalogued Drilled Shafts

A total of 662 drilled shafts had preliminary information cataloged from the three available databases. The concrete age at time of thermal testing ranges from 8.7 to 139.8 hours. Average drilled shaft temperatures measured at the cage as reported in readily available testing results documents, deliverable reports, or thermal data files range from 83.5°F to 160.7°F. Peak average drilled shaft temperatures measured at the cage as reported in readily available testing results documents, deliverable reports, or thermal data files range from 86.8°F to 183.8°F. Local maximum shaft temperatures measured at the cage as reported in readily available testing results documents, deliverable reports, or thermal data files range from 86.8°F to 188.9°F. Cataloged drilled shafts were found to be located in the following Florida counties: Broward, Duval, Citrus, Miami-Dade, Lake, Hillsborough, Palm Beach, Hernando, Polk, St. Lucie, and Okeechobee. Six drilled shaft locations are unknown. A breakdown of the number of drilled shafts per county can be found in Table 2.1.

Regarding file inventory, all cataloged drilled shafts include availability to raw thermal data per wire or tube, depending on testing method used; 227 drilled shafts include available FDOT drilled shaft logs, 78 drilled shafts include available SPT borings; and 202 shafts include both the concrete supplier and available mix designs.

Table 2.1 Breakdown of the number of drilled shafts per county

County	Number of Drilled Shafts
Broward	170
Duval	2
Citrus	6
Miami-Dade	74
Lake	2
Hillsborough	350
Palm Beach	27
Hernando	3
Polk	8
St. Lucie	12
Okeechobee	1

2.3 Exploratory Analysis

This preliminary exploratory analysis of cataloged information focused on general trends seen between drilled shaft size (by way of reported reinforcement cage diameter), concrete age at time of testing, average shaft temperatures, and local maximum temperatures. This analysis did not consider variations in concrete mix design. The 662 data points were sorted by reinforcement cage size and plotted to explore various temperature distributions as they relate to concrete age.

Local maximum cage temperatures from the 662 shafts were first plotted against shaft diameters (Figure 2.1). The data shows a wide range of maximum temperatures for each shaft size/diameter which indicates another variable is contributing to the peak temperature (e.g. ambient temperature, mix design, or concrete age at time of testing). This plot also helps clarify how the data points are sorted with different marker sizes and colors. Larger markers indicate larger diameter shafts; marker colors and sizes are kept consistent throughout.

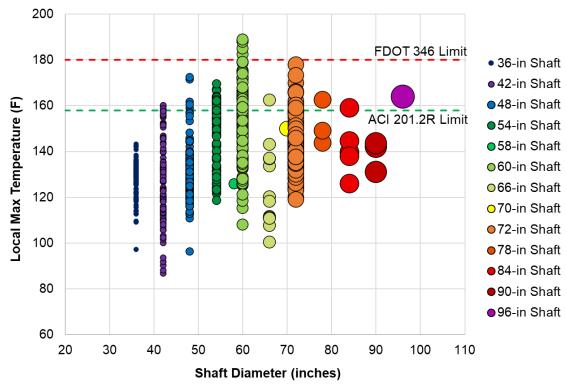


Figure 2.1 Plot presenting maximum cage temperature (at time of testing) vs drilled shaft diameter. [This figure shows 662 data points where local maximum temperature is plotted against shaft diameter. A violet to red color spectrum is used to identify the shaft size in the field of data points where red represents larger shafts and violet represents smaller shafts. It shows that cage diameter, and therefore shaft size, is not controlling maximum temperatures. This plot also helps to clarify how the data points are displayed.]

Maintaining the breakdown by shaft diameter, local maximum temperatures were then plotted versus concrete age at time of testing (Figure 2.2). There does appear to be a general trend of increasing temperature up to 24 to 48 hours, then a subtle reduction thereafter.

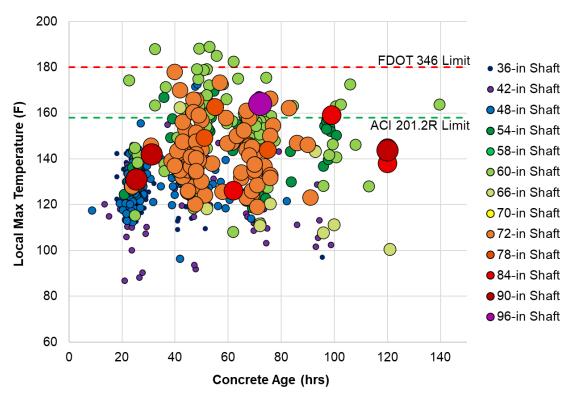


Figure 2.2 Plot presenting maximum cage temperature vs concrete age.

[This figure shows 662 data points where the local maximum temperature and concrete age are sorted by shaft diameter. A violet to red color spectrum is used to identify the shaft size in the field of data points where red represents larger shafts and violet represents smaller shafts. It shows a general trend of increasing temperature up to 24 - 48 hours, then a subtle reduction thereafter.]

In a similar format to Figure 2.2, average shaft temperatures at the cage were plotted against concrete age at time of testing (Figure 2.3). This is the average of the average between all tubes or wires (depending on method of testing).

Lastly, peak average temperatures at the cage were plotted against concrete age at time of testing (Figure 2.4).

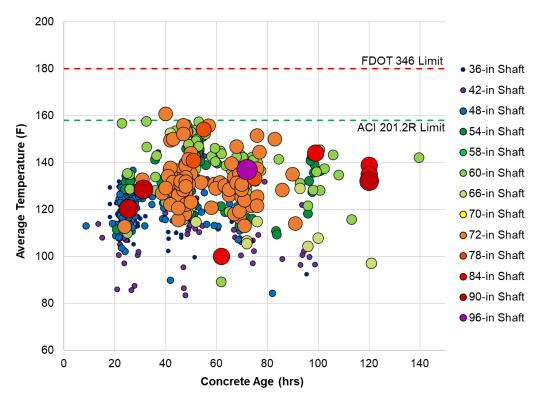


Figure 2.3 Plot presenting average temperature vs concrete age.

[This figure shows 662 data points where the average temperature and concrete age are sorted by shaft diameter. A violet to red color spectrum is used to identify the shaft size in the field of data points where red represents larger shafts and violet represents smaller shafts.]

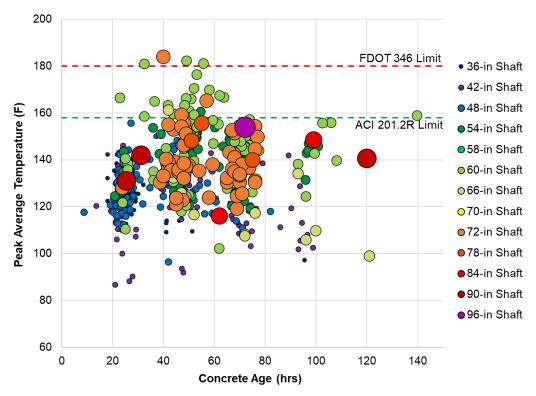


Figure 2.4 Plot presenting peak average temperature vs concrete age. [This figure shows 662 data points where the peak average temperature and concrete age are sorted by shaft diameter. A violet to red color spectrum is used to identify the shaft size in the field of data points where red represents larger shafts and violet represents smaller shafts.]

Chapter Three: Collection of New Data

This chapter discusses the collection of new temperature data and associated field documentation from newly constructed cast-in-place concrete foundation elements. Six sites were investigated using internal temperature schemes: four project sites were FDOT shaft sites coordinated/provided by district engineers and/or consultants working for FDOT, one site was at the University of South Florida Tampa Campus, and the last was a cell tower foundation. The following is a list of these projects:

- 1. Judy Genshaft Honors College (University of South Florida) in Tampa, Florida.
- 2. Polk Parkway Drilled Shaft OC-13 in Auburndale, Florida.
- 3. I-4 Drilled Shaft OC-19 in Polk City, Florida.
- 4. I-395, SR 836, and I-95 Intersection in Miami, Florida.
- 5. N. Florida & Sinclair Hills Drilled Shaft in Tampa, Florida.
- 6. US 17 Drilled Shaft 1-4 in Bartow, Florida.

3.1 Judy Genshaft Honors College Drilled Shaft DS-6, Tampa, Florida

Drilled shaft DS-6 was constructed by R.W. Harris, Inc. on April 9, 2021, as part of the Judy Genshaft Honors College project located on the University of South Florida (USF) campus in Tampa, Florida (Figure 4.1). This drilled shaft was designed to be 42 inches in diameter, 82 feet long, and was cast with a full-length temporary casing (no slurry was used).

Figure 3.1 Satellite imagery illustrating the general location of DS-6.

[Figure 3.1 Detailed Description: This is a photo of satellite imagery illustrating the general location of drilled shaft DS-6, which is denoted by a yellow star. The main cross streets are USF Genshaft Drive and USF Alumni Drive on the USF Tampa Campus. DS-6 is located in the northwest quadrant just north of the Muma College of Business.]

Testing began on April 9, 2021, and concluded on April 12, 2021, during which the air temperature averaged approximately 72°F. The concrete mix design is provided in Table 3.1 with the complete concrete mix design submittal document included in Appendix A.

Table 3.1 DS-6 concrete mix proportions

Material	Amount
Cement	275 lb
Slag	425 lb
Coarse Aggregate	1,450 lb
Fine Aggregate	1,362 lb
Water	275 lb
Admixture (Air Entrainer)	0.5 oz/cy
Admixture (Stabilizer)	2.00 to 10.00 oz/cwt
Admixture (Water Reducer)	2.00 to 10.00 oz/cwt
Shaft Diameter	42 in.
Cementitious Material	700 lb/yd ³
Slag Percentage	60.7%
w/cm Ratio	0.39

3.1.1 Instrumentation

Instrumentation included the following sensor and data collection components: TIPTM Thermal Wire and Thermal Acquisition Ports (TAP), both manufactured by Pile Dynamics, Inc. The thermal wires used included digital thermal sensors positioned every 12 inches along the length of the wire. Using a combination of plastic wire ties and PEX tie wire, four 90-foot thermal wires were installed along the length of the reinforcement cage and positioned roughly 90 degrees apart around the circumference of the cage (Figure 3.2). An additional center thermal wire, 25 feet in length, was installed along an additional rebar positioned and secured using rebar cross bracing at the center of the reinforcement cage (Figure 3.3) located at the top 25 feet of the drilled shaft. Figure 3.4 shows the fully instrumented reinforcement cage ready to be placed before concreting. The thermal wire connector ends and above-concrete sensors were bundled and protected using heavy duty plastic bags tightly wrapped in all-weather duct tape to ensure they remained clean during concrete placement. Once concrete placement was complete, the protective plastic was removed and TAP boxes were connected to each thermal wire (Figure 3.5). Each TAP was

powered by a rechargeable battery and automatically sampled and recorded temperature measurement data provided the thermal wire was properly connected and was not damaged during construction. For purposes of this study, data was collected every 15 minutes.

Figure 3.2 Installation of thermal wires along the length of the DS-6 reinforcement cage. [This is a photo taken from inside the DS-6 reinforcement cage showing a completely installed thermal wire at the top right and an in process thermal wire installation at the bottom right.]

Figure 3.3 Installation of center wire along additional center rebar.

[Figure 3.3 Detailed Description: This is a photo taken from inside the DS-6 reinforcement cage showing the in-process installation of the center thermal wire. Center rebar cross bracing and a 25-foot center rebar have already been installed.]

Figure 3.4 Fully instrumented DS-6 reinforcement cage ready to be placed for concrete casting. [This is a photo of the DS-6 reinforcement cage laying on its side showing the full cage length and diameter taken from the top of the cage. All cage thermal wires and center thermal wire have been installed, and all above-concrete sensors and wire connector ends have been bundled and secured in heavy-duty plastic bags and Gorilla tape. The cage is staged for auger location placement and concrete casting.]

Figure 3.5 Connection of the Thermal Acquisition Port boxes after concrete placement. [This is a photo of DS-6 after concrete placement with approximately five feet of rebar stick-up illustrating the connection of Thermal Acquisition Port boxes to the thermal wires to begin data collection.]

3.1.2 Collected Data

Temperature measurement data from the installed thermal wires, environmental conditions during construction, concrete mix design, and mill certificates associated with drilled shaft DS-6 were collected and cataloged. Data was collected from April 9th through the 12th, 2021.

General information pertaining to the test shaft is presented in Figure 3.6 from the TIP Reported software. This includes the time at which data collection started, elapsed data time, drilled shaft diameter, reinforcement cage diameter, drilled shaft length, average temperature, and local minimum and maximum temperatures. This information is typically used in the assessment of the shaft integrity, size and shape, and cage concentricity. For this study, this information was used to correlate such parameters with peak and differential temperature measurements. Elapsed data time is a feature of thermal testing via wire method as data is collected every 15 minutes, which allows for a time/temperature trace for each sensor.

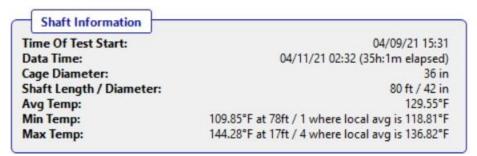


Figure 3.6 DS-6 Temperature Analysis Shaft Information (4/11/21 0232hrs).

[This is a screenshot displaying temperature analysis shaft information from the TIP Reporter software. The information shown is: time of test start at 4/9/21 1531hrs, data time at 4/11/21 0232hrs, cage diameter of 36 inches, shaft length/diameter of 80 feet/42 inches, average temperature of 129.55°F, minimum temperature of 109.85°F at 78 feet (wire 1) where local average is 118.81°F, and maximum temperature is 144.28°F at 17 feet (wire 4) where local average is 136.82°F.]

Figure 3.7 shows all temperature data versus depth for DS-6 recorded 35 hours after casting. This is when peak average cage temperature occurred, where average refers to the average temperature of all four thermal wires located at the reinforcement cage. The average temperature profile is given as the bold black line marker also denoted as "AVG" in the plot legend. The location of peak average cage temperature is marked at 39 feet where the local peak average temperature was 141.1°F. This depth location was used to plot the temperature evolution over time for the entire data collection duration (Figure 3.8).

In addition to the cage wire data, the center wire data versus depth is also presented in Figure 3.9. This plot presents two data series: the peak temperatures for each individual sensor which occurred at varied times (denoted as "Max"), and center wire measurements recorded 30.3 hours into testing when the peak temperature of any sensor was recorded. This occurred at a depth of 16 feet with the maximum temperature measuring 161.26°F. Again, data from this depth was used to plot the temperature evolution at that depth over time for the entire testing duration (Figure 3.10).

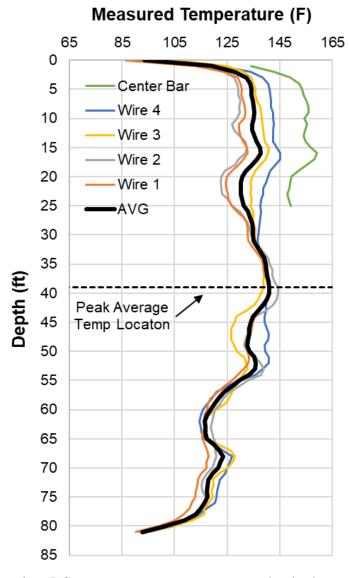


Figure 3.7 Plot presenting DS-6 cage temperature versus depth data at peak average cage temperature (35 hours into testing).

[This is a plot presenting temperature data on the x-axis versus depth data on the y-axis and includes temperature measurements from all four thermal wires installed at the reinforcement cage as well as the thermal wire installed along a center rebar. The depth reaches just past 80 feet, and temperature measurements range from approximately 90°F to 160°F. There is also an annotation noting the peak average cage temperature of the shaft located at 39 feet measuring 141.1°F.]

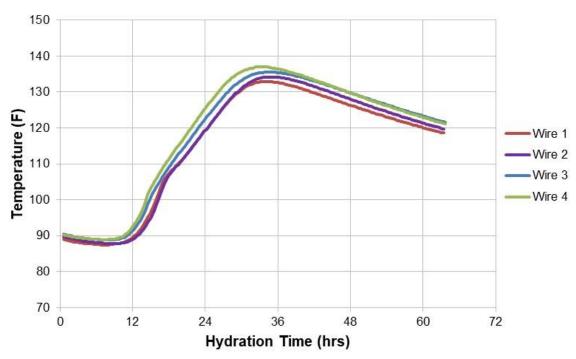


Figure 3.8 Plot presenting DS-6 temperature versus time data at a depth of 39 feet, where peak average cage temperature occurred (35 hours into testing).

[This is a plot presenting temperature data on the y-axis versus time on the x-axis at a depth of 40 feet and includes temperature measurements from all four thermal wires installed at the reinforcement cage. The time ranges from 0 hours to 63 hours, and the temperature measurements range from approximately 90°F to 138°F.]

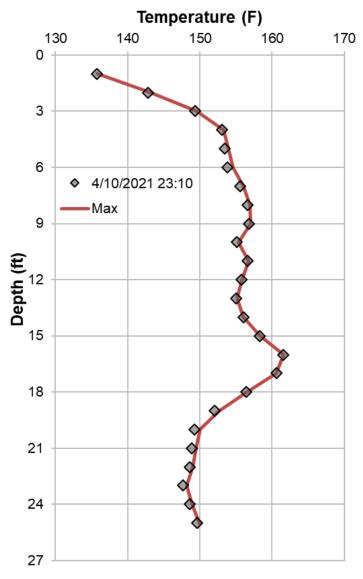


Figure 3.9 Plot presenting DS-6 center wire temperature versus depth data at the time of peak temperature of the center wire (30 hours into testing).

[This is a plot presenting center wire temperature data on the x-axis versus depth data on the y-axis. The depth reaches 25 feet, and temperature measurements range from approximately 135°F to 161°F.]

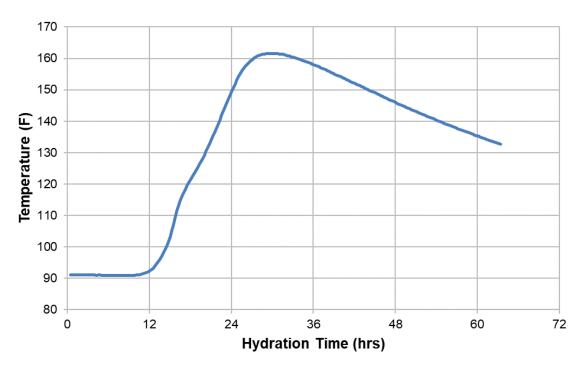


Figure 3.10 Plot presenting DS-6 center wire temperature versus time data at a depth of 16 feet, where peak center wire temperature occurred.

[This is a plot presenting temperature data on the y-axis versus time on the x-axis at a depth of 40 feet and includes temperature measurements from the center thermal wire. The time ranges from 0 hours to 63 hours, and the temperature measurements range from approximately 90°F to 161°F.]

Figure 3.11 presents the radius versus depth profile for DS-6. This plot also includes concrete cover results based on the location of the reinforcement cage. The Radius Analysis Shaft Information table from the TIP Reporter software is shown in Figure 3.12. Rather than average, minimum, and maximum temperature information, this provides average, minimum, and maximum shaft radius information.

The last results plot generated by TIP Reporter is a 3D radius view of the shaft. This plot is interactive and can be rotated within the software. Due to the static nature of the figures in this report, however, Figure 3.13 provides a view of the general shaft shape. It should be noted that this figure is not to scale, and the vertical dimensions do not correspond to the lateral dimension.

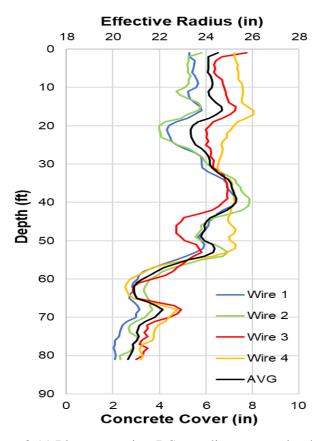


Figure 3.11 Plot presenting DS-6 radius versus depth data.

[This is a plot presenting radius and concrete cover data on the x-axis versus depth data on the y-axis and includes radius values for the locations of all four thermal wires installed at the reinforcement cage. The depth reaches just over 80 feet, and radius values range from approximately 22 to 26 inches. Concrete cover values range from approximately 2 to 8 inches.]

Figure 3.12 DS-6 Radius Analysis Shaft Information.

[This is a screenshot displaying radius analysis shaft information from the TIP Reporter software. The information shown is: time of test start at 4/9/21 1531hrs, data time at 4/11/21 0302hrs, cage diameter of 36 inches, shaft length/diameter of 80 feet/42 inches, average radius of 23.27 inches, minimum radius of 16.79 inches at 0 feet (wire 4) where local average is 17.32 inches, and maximum radius of 26.73 inches at 82 feet (wire 4) where local average is 25.62 inches.]

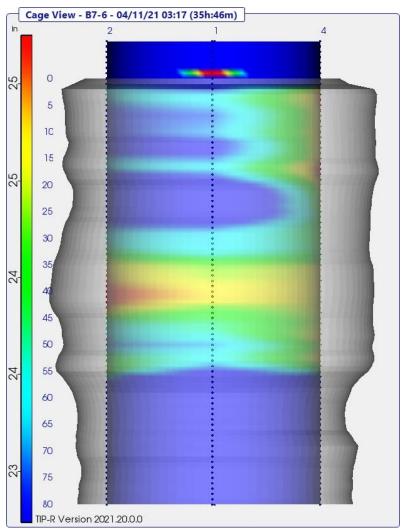


Figure 3.13 DS-6 3D radius view.

[Figure 3.13 Detailed Description: This is a plot generated by TIP reporter showing 3D radius view of DS-6. It can be seen that the general shape of the drilled shaft is not symmetrical with varying concrete cover.]

3.2 Polk Parkway Drilled Shaft OC-13, Auburndale, Florida

Drilled shaft OC-13 was constructed by Conti Corporation on November 4, 2021, on the north side of US 92 just east of the Polk Parkway in Auburndale, Florida (Figure 3.14). This drilled shaft had a design diameter of 72 inches, length of 44 feet and was cast with a full-length, 84-inch diameter temporary casing.

Figure 3.14 Satellite imagery illustrating the general location of OC-13.

[This is a photo of satellite imagery illustrating the general location of drilled shaft OC-13, which is denoted by a yellow star. The main crossroads are State Road 570 (Polk Parkway) and US 92 in Auburndale, Florida. OC-13 is located in the northeast quadrant on the north should of US 92 just east of the exit off the Polk Parkway.]

Testing began on November 4, 2021, and concluded on November 8, 2021, during which the air temperature averaged approximately 66°F. The concrete mix proportions from each truck ticket are provided in Tables 3.2 through 3.10. Interestingly, these tables show similarities in the first 7 trucks with w/c ratios of 0.38-0.39 but the last two trucks with about half the volume of the first trucks reported w/c ratio of 0.28. It is unclear if these trucks were excepted with slump testing or further Q/C. Copies of the delivery tickets are provided in Appendix B.

Table 3.2 OC-13 truck #1 (9 cubic yards) concrete mix proportions.

Material	Amount
Cement	2,375 lb (263.89 lb/yd ³)
Slag	3,540 lb (393.33 lb/yd ³)
Coarse Aggregate (2% moisture)	14,440 lb (1,604.44 lb/yd ³)
Fine Aggregate (4.2% moisture)	12,040 lb (1,337.78 lb/yd ³)
Batch Water	1,516 lb (168.44 lb/yd ³)
Admixture (Air)	6 oz.
Admixture (Water Reducer #1)	621 oz.
Admixture (Water Reducer #2)	207 oz.
Cementitious Material	687.22 lb/yd ³
Slag Percentage	60%
w/cm Ratio	0.39

Table 3.3 OC-13 truck #2 (9 cubic yards) concrete mix proportions.

Material	Amount
Cement	2,370 lb (263.33 lb/yd ³)
Slag	3,550 lb (394.44 lb/yd ³)
Coarse Aggregate (2% moisture)	14,560 lb (1,617.78 lb/yd ³)
Fine Aggregate (4.2% moisture)	11,960 lb (1,328.89 lb/yd ³)
Batch Water	1,441 lb (160.11 lb/yd ³)
Admixture (Air)	7 oz.
Admixture (Water Reducer #1)	621 oz.
Admixture (Water Reducer #2)	207 oz.
Cementitious Material	657.78 lb/yd ³
Slag Percentage	60%
w/cm Ratio	0.38

Table 3.4 OC-13 truck #3 (9 cubic yards) concrete mix proportions.

Material	Amount
Cement	2,375 lb (236.89 lb/yd ³)
Slag	3,535 lb (392.78 lb/yd ³)
Coarse Aggregate (2% moisture)	14,440 lb (1,604.44 lb/yd ³)
Fine Aggregate (4.2% moisture)	12,000 lb (1,333.33 lb/yd ³)
Batch Water	1,441 lb (160.11 lb/yd ³)
Admixture (Air)	6 oz.
Admixture (Water Reducer #1)	621 oz.
Admixture (Water Reducer #2)	207 oz.
Cementitious Material	656.67 lb/yd ³
Slag Percentage	60%
w/cm Ratio	0.38

Table 3.5 OC-13 truck #4 (9 cubic yards) concrete mix proportions.

Material	Amount
Cement	2,385 lb (265 lb/yd ³)
Slag	3,550 lb (394.44 lb/yd ³)
Coarse Aggregate (2% moisture)	14,460 lb (1,606.67 lb/yd ³)
Fine Aggregate (4.2% moisture)	12,080 lb (1,342.22 lb/yd ³)
Batch Water	1,441 lb (160.11 lb/yd ³)
Admixture (Air)	6 oz.
Admixture (Water Reducer #1)	621 oz.
Admixture (Water Reducer #2)	207 oz.
Cementitious Material	659.44 lb/yd ³
Slag Percentage	60%
w/cm Ratio	0.38

Table 3.6 OC-13 truck #5 (9 cubic yards) concrete mix proportions.

Material	Amount
Cement	2,385 lb (265.00 lb/yd ³)
Slag	3,525 lb (391.67 lb/yd ³)
Coarse Aggregate (2% moisture)	14,200 lb (1,577.78 lb/yd ³)
Fine Aggregate (4.2% moisture)	12,080 lb (1,342.22 lb/yd ³)
Batch Water	1,441 lb (160.11 lb/yd ³)
Admixture (Air)	6 oz.
Admixture (Water Reducer #1)	621 oz.
Admixture (Water Reducer #2)	210 oz.
Cementitious Material	656.67 lb/yd ³
Slag Percentage	60%
w/cm Ratio	0.38

Table 3.7 OC-13 truck #6 (9 cubic yards) concrete mix proportions.

Material	Amount
Cement	2,385 lb (265.00 lb/yd ³)
Slag	3,525 lb (391.67 lb/yd ³)
Coarse Aggregate (2% moisture)	14,260 lb (1,584.44 lb/yd ³)
Fine Aggregate (4.2% moisture)	12,140 lb (1,348.89 lb/yd ³)
Batch Water	1,441 lb (160.11 lb/yd ³)
Admixture (Air)	5 oz.
Admixture (Water Reducer #1)	621 oz.
Admixture (Water Reducer #2)	210 oz.
Cementitious Material	656.67 lb/yd ³
Slag Percentage	60%
w/cm Ratio	0.38

Table 3.8 OC-13 truck #7 (8 cubic yards) concrete mix proportions.

Material	Amount
Cement	2,105 lb (263.13 lb/yd ³)
Slag	3,140 lb (392.50 lb/yd ³)
Coarse Aggregate (2% moisture)	12,900 lb (1,612.50 lb/yd ³)
Fine Aggregate (4.2% moisture)	10,640 lb (1,330.00 lb/yd ³)
Batch Water	1,282 lb (160.25 lb/yd ³)
Admixture (Air)	6 oz.
Admixture (Water Reducer #1)	555 oz.
Admixture (Water Reducer #2)	183 oz.
Cementitious Material	655.63 lb/yd ³
Slag Percentage	60%
w/cm Ratio	0.38

Table 3.9 OC-13 truck #8 (4 cubic yards) concrete mix proportions.

Material	Amount
Cement	1,055 lb (263.75 lb/yd ³)
Slag	1,560 lb (390.00 lb/yd ³)
Coarse Aggregate (2% moisture)	6,460 lb (1,615.00 lb/yd ³)
Fine Aggregate (4.2% moisture)	5,320 lb (1,330.00 lb/yd ³)
Batch Water	391 lb (97.75 lb/yd ³)
Admixture (Air)	3 oz.
Admixture (Water Reducer #1)	276 oz.
Admixture (Water Reducer #2)	93 oz.
Cementitious Material	653.75 lb/yd ³
Slag Percentage	60%
w/cm Ratio	0.28

Table 3.10 OC-13 truck #9 (6 cubic yards) concrete mix proportions.

Material	Amount
Cement	1,580 lb (263.33 lb/yd ³)
Slag	2,360 lb (393.33 lb/yd ³)
Coarse Aggregate (2% moisture)	9,660 lb (1,610.00 lb/yd ³)
Fine Aggregate (4.2% moisture)	8,000 lb (1,333.33 lb/yd ³)
Batch Water	583 lb (97.17 lb/yd ³)
Admixture (Air)	4 oz.
Admixture (Water Reducer #1)	414 oz.
Admixture (Water Reducer #2)	138 oz.
Cementitious Material	656.67 lb/yd ³
Slag Percentage	60%
w/cm Ratio	0.28

3.2.1 Instrumentation

Similar to DS-6, instrumentation of OC-13 included the following sensor and data collection components: TIPTM Thermal Wire and Thermal Acquisition Ports (TAP). Using a combination of plastic wire ties and PEX tie wire, four 50-foot thermal wires were installed along the length of the reinforcement cage and positioned roughly 90 degrees apart around the cage circumference (Figure 3.15). An additional center thermal wire, 25 feet in length, was installed along a 10-foot rebar positioned and secured using rebar cross bracing at the center of the reinforcement cage (Figures 3.16 and 3.17) extending 6.5 to 16.5 feet below the top of the drilled shaft. The length of the center rebar made use of the first 10 out of 25 available sensors along the center thermal wire. The remaining 15 sensors were positioned across the shaft diameter and secured to the center rebar cross bracing (Figure 3.18). These remaining sensors allowed temperature data to be collected along three cross bracing legs to give the radial temperature distribution. Figure 3.19 shows the fully instrumented reinforcement cage ready to be placed in the excavation. The thermal wire connector ends and above-concrete sensors were bundled and protected using heavy duty plastic bags tightly wrapped with all-weather duct tape to ensure they remained clean during concrete placement. Figure 3.20 shows the fully instrumented reinforcement cage placed in the excavation prior to concreting. Once concrete placement was complete, the protective plastic was removed, and TAP boxes were connected to each thermal wire (Figure 3.21).

Figure 3.15 Installation of thermal wires along the length of the OC-13 reinforcement cage. [This is a photo taken from the top of the OC-13 reinforcement cage showing installed cage thermal wires positioned roughly 90 degrees apart radially.]

Figure 3.16 Installation of the center rebar cross bracing for drilled shaft OC-13. [This is a photo taken from inside the OC-13 reinforcement cage showing a graduate student securing the cross bracing that will be used to secure the center rebar for the center thermal wire.]

Figure 3.17 Installation of center thermal wire in OC-13 reinforcement cage. [This is a photo taken showing the inside of the OC-13 reinforcement cage where several graduate students are installing the center thermal wire along the 10-foot center rebar.]

Figure 3.18 Installation of the bottom 15 sensors of the center thermal wire in an across-shaft configuration along the bottom rebar cross bracing in OC-13 reinforcement cage.

[Figure 3.18 Detailed Description: This is two side-by-side photos taken inside the OC-13 reinforcement cage showing a graduate student installing the bottom 15 sensors of the center thermal wire. The left photo shows a graduate student securing the wire to the bottom rebar cross bracing with a PEX rebar tie gun. The right photo shows a graduate student taking measurements between each sensor after installation.]

Figure 3.19 Fully instrumented OC-13 reinforcement cage ready to be placed for concrete casting. [This is a photo taken from outside the top of the OC-13 reinforcement cage. All cage thermal wires and center thermal wire have been installed, and all above-concrete sensors and wire connector ends have been bundled and secured in heavy-duty plastic bags and Gorilla tape.]

Figure 3.20 Fully instrumented OC-13 reinforcement cage placed in the augered location prior to concrete placement.

[This is a photo of the open excavation of OC-13 with the installed full-length temporary casing prior to concrete placement.]

Figure 3.21 Two out of five total OC-13 TAP boxes connected to their respective thermal wires. [This is a photo of two TAP boxes hanging from the top stirrup of the OC-13 reinforcement cage and connected to their respective thermal wires after concrete placement. The front of one of the TAP boxes is visible showing an illuminated green light indicating successful connection.]

3.2.2 Collected Data

Temperature measurement data from the installed thermal wires, environmental conditions during construction, FDOT drilled shaft log, concrete mix design, and mill certificates associated with drilled shaft OC-13 were collected and cataloged. Below are graphical presentations, generated in Excel, of particular, relevant portions of the data collected from November 4th through the 8th, 2021. However full datasets are archived in both Excel and TIP Reporter formats. Upon data review, it was found that the center thermal wire for this study was unable to collect data after concrete placement. During construction, the rigid concrete pump line was observed to surge vertically during pumping. This led to the pump line coupler hitting the top center bar cross bracing and ultimately cause separation at the pump line coupling and damage to the thermal wire. Figure 3.22 shows the disconnected slick line just above the slurry level. OC-13 was also tested via the TIP probe method.

Figure 3.22 Tremie separation during OC-13 concrete placement.

[Figure 3.22 Detailed Description: This is a photo looking down into the augered location of OC-13. The hole is partially filled with concrete that is covered in slurry. In the upper left corner of the photo is the concrete pump line that is separated at one of the segment couplings.]

Table 3.11 below presents the software-reported Temperature Analysis Shaft Information for OC-13 based on the thermal probe data.

Table 3.11 OC-13 temperature analysis shaft information.

Drilled Shaft Diameter:	72 inches
Cage Diameter:	60 inches
Drilled Shaft Length:	41.5 feet
Average Temperature:	129.49°F
Local Minimum Temperature:	116.96°F at 18.6 feet on Tube 4
Local Maximum Temperature:	136.3°F at 24.4 feet on Tube 1

Figure 3.23 is a plot generated in TIP reporter presenting all temperature data at a depth of 27 feet over the entire testing time. This is the depth where peak average cage temperature occurred (based on the usable thermal wire data). Recall, this peak average is the average temperature of all four thermal wires located at the reinforcement cage and represents the temperature at the cage when centered within the concrete mass. When reviewing Figure 3.23, peak average cage temperature occurred late 11/5/21. Figure 3.24 shows the temperature profiles from probe data collected on 11/7, and shows the average probe temperature profile for that specific testing time and is given as the bold black line marker also denoted as "AVG" in the plot legend. Thermal wire data in this format was not available due to the previously mentioned sensor failures. These failures are shown in Figure 3.23 as sharp discontinuities where the recorded temperature falls off scale.

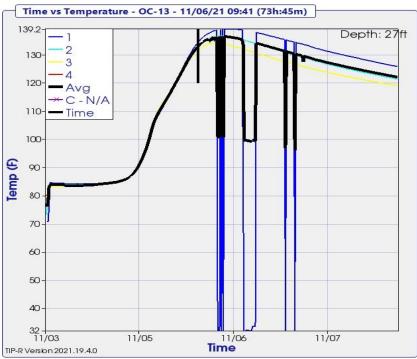


Figure 3.23 Plot presenting OC-13 temperature versus time thermal wire data at a depth of 27 feet, where peak average cage temperature occurred. Sensor failures are also present at this depth for wire #1.

[Figure 3.24 Detailed Description: This is a plot presenting wire temperature data on the y-axis versus time on the x-axis at a depth of 27 feet and includes temperature measurements from all four thermal wires installed at the reinforcement cage. This plot also illustrates the sensor failures that occurred and are shown as temperature data drops that drop well below the temperature evolution curve. The time ranges from 11/3/21 to 11/8/21, and the temperature measurements range from approximately 85°F to 136°F.]

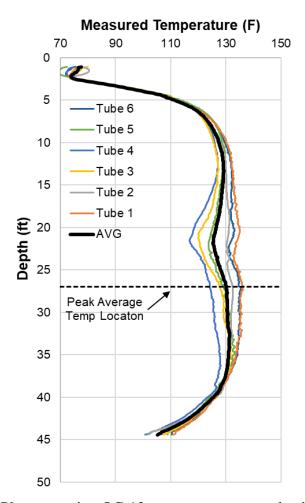


Figure 3.24 Plot presenting OC-13 temperature versus depth probe data.

[This is a plot presenting probe temperature data on the x-axis versus depth data on the y-axis and includes temperature measurements from all six access tubes installed at the reinforcement cage. The depth reaches 44 feet, and temperature measurements range from approximately 75°F to 135°F.]

Figure 3.25 presents the radius versus depth profile for OC-13 resulting from the collected probe data. This plot also includes concrete cover results based on the location of the reinforcement cage. Like the Temperature Analysis Shaft Information, the Radius Analysis Shaft Information is presented in Table 3.12 but summarizes the average, minimum, and maximum shaft radius information.

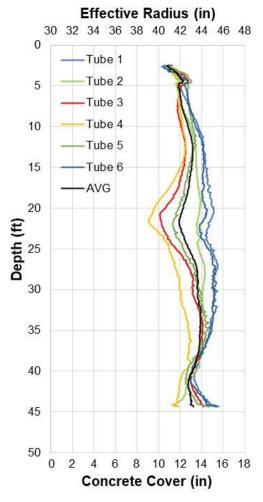


Figure 3.25 Plot presenting OC-13 radius versus depth probe data.

[This is a plot presenting radius and concrete cover data on the x-axis versus depth data on the y-axis and includes radius values for the locations of all six probe access tubes installed at the reinforcement cage. The depth reaches just past 42 feet, and radius values range from approximately 38 to 44 inches. Concrete cover values range from approximately 8 to 14 inches.]

Table 3.12 OC-13 radius analysis shaft information

Average Radius:	42.9 inches
Local Minimum Radius:	39.07 inches at 21.6 feet at Tube 4
Local Maximum Radius:	45.60 inches at 44.4 feet at Tube 1

The 3D radius view of the shaft is shown in Figure 3.26.

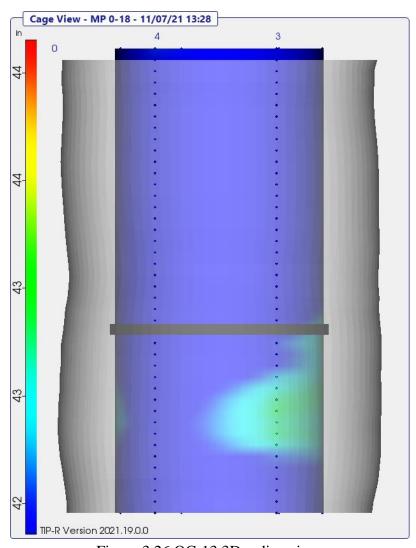


Figure 3.26 OC-13 3D radius view.

[This is a plot generated by TIP reporter showing 3D radius view of OC-13. It can be seen that the general shape of the drilled shaft is not symmetrical with varying concrete cover.]

3.3 I-4 Drilled Shaft OC-19, Polk City, Florida

Drilled shaft OC-19 was constructed by Conti Corporation on November 23, 2021, on the north side of I-4 just east of the Polk Parkway in Polk City, Florida (Figure 3.27). This drilled shaft had design diameter of 72 inches, length of 37 feet long, and was cast with a 10-foot long partial-length, 84-inch diameter temporary casing (Figure 3.28).

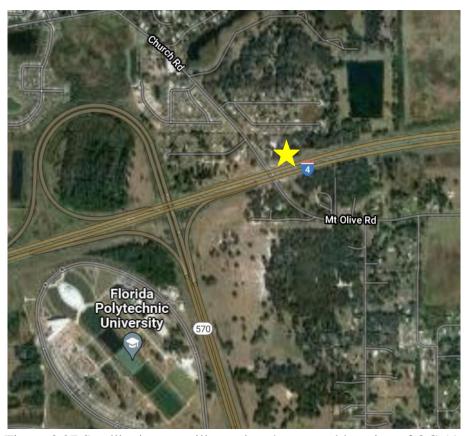


Figure 3.27 Satellite imagery illustrating the general location of OC-19.

[This is a photo of satellite imagery illustrating the general location of drilled shaft OC-19, which is denoted by a yellow star. The main crossroads are Church Road and I-4 in Polk City, Florida. OC-19 is located in the northeast quadrant on the north shoulder of I-4 westbound just east of Church Rd.]

Figure 3.28 Excavation of drilled shaft OC-19 with partial-length casing installed. [This is a photo showing the construction location of drilled shaft OC-19. The location is still in the process of being augered with slurry flowing from a large hose line. The partial-length casing is already placed inside the augered portion.]

Testing began on November 23, 2021, and concluded on November 29, 2021, during which the air temperature averaged approximately 60°F. The concrete mix proportions for each truck are provided in Tables 3.13 through 3.18 with all original concrete delivery tickets included in Appendix C. The truck tickets confirm a more consistent concrete mix from all trucks where the w/c ratio only varied slightly from 0.39 to 0.4

Table 3.13 OC-19 truck #1 (9 cubic yards) concrete mix proportions.

Material	Amount
Cement	2,395 lb (266.11 lb/yd ³)
Slag	3,545 lb (393.89 lb/yd ³)
Coarse Aggregate (1.9% Moisture)	14,540 lb (1,615.56 lb/yd ³)
Fine Aggregate (3.9% Moisture)	11,900 lb (1,322.22 lb/yd ³)
Batch Water	1,599 lb (177.71 lb/yd ³)
Admixture (Air)	5 oz.
Admixture (Water Reducer #1)	531 oz.
Admixture (Water Reducer #2)	207 oz.
Cementitious Material	5940 lb (660.00 lb/yd³)
Slag Percentage	60%
w/cm Ratio	0.39

Table 3.14 OC-19 truck #2 (9 cubic yards) concrete mix proportions.

Material	Amount
Cement	2,370 lb (263.33 lb/yd ³)
Slag	3,540 lb (393.33 lb/yd ³)
Coarse Aggregate (1.9% Moisture)	14,280 lb (1,586.67 lb/yd ³)
Fine Aggregate (3.9% Moisture)	11,940 lb (1,326.67 lb/yd ³)
Batch Water	1,599 lb (177.71 lb/yd ³)
Admixture (Air)	6 oz.
Admixture (Water Reducer #1)	534 oz.
Admixture (Water Reducer #2)	207 oz.
Cementitious Material	5910 lb (656.67 lb/yd ³)
Slag Percentage	60%
w/cm Ratio	0.40

Table 3.15 OC-19 truck #3 (9 cubic yards) concrete mix proportions.

Material	Amount	
Cement	2,365 lb (262.78 lb/yd ³)	
Slag	3,530 lb (392.22 lb/yd ³)	
Coarse Aggregate (1.9% Moisture)	14,560 lb (1,617.78 lb/yd ³)	
Fine Aggregate (3.9% Moisture)	11,960 lb (1,328.89 lb/yd ³)	
Batch Water	1,599 lb (177.71 lb/yd ³)	
Admixture (Air)	6 oz.	
Admixture (Water Reducer #1)	531 oz.	
Admixture (Water Reducer #2)	207 oz.	
Cementitious Material	5925 lb (655.00 lb/yd ³)	
Slag Percentage	60%	
w/cm Ratio	0.40	

Table 3.16 truck #4 (9 cubic yards) concrete mix proportions.

Material	Amount	
Cement	2,430 lb (270 lb/yd ³)	
Slag	3,550 lb (394.44 lb/yd ³)	
Coarse Aggregate (1.9% Moisture)	14,380 lb (1,597.78 lb/yd ³)	
Fine Aggregate (3.9% Moisture)	11,960 lb (1,328.89 lb/yd ³)	
Batch Water	1,599 lb (177.71 lb/yd ³)	
Admixture (Air)	6 oz.	
Admixture (Water Reducer #1)	534 oz.	
Admixture (Water Reducer #2)	207 oz.	
Cementitious Material	5980 lb (664.44 lb/yd ³)	
Slag Percentage	59%	
w/cm Ratio	0.39	

Table 3.17 OC-19 truck #5 (9 cubic yards) concrete mix proportions.

Material	Amount		
Cement	2,390 lb (265.56 lb/yd ³)		
Slag	3,530 lb (392.22 lb/yd ³)		
Coarse Aggregate (1.9% Moisture)	14,540 lb (1,615.56 lb/yd ³)		
Fine Aggregate (3.9% Moisture)	12,000 lb (1,333.33 lb/yd ³)		
Batch Water	1,599 lb (177.71 lb/yd ³)		
Admixture (Air)	6 oz.		
Admixture (Water Reducer #1)	531 oz.		
Admixture (Water Reducer #2)	207 oz.		
Cementitious Material	5920 lb (657.78 lb/yd ³)		
Slag Percentage	60%		
w/cm Ratio	0.40		

Table 3.18 OC-19 truck #6 (7 cubic yards) concrete mix proportions.

Material	Amount	
Cement	1,860 lb (265.71 lb/yd ³)	
Slag	2,755 lb (393.57 lb/yd ³)	
Coarse Aggregate (1.9% Moisture)	11,280 lb (1,611.43 lb/yd ³)	
Fine Aggregate (3.9% Moisture)	9,340 lb (1,334.29 lb/yd ³)	
Batch Water	1,216 lb (173.74 lb/yd ³)	
Admixture (Air)	4 oz.	
Admixture (Water Reducer #1)	414 oz.	
Admixture (Water Reducer #2)	159 oz.	
Cementitious Material	4615 lb (659.29 lb/yd ³)	
Slag Percentage	60%	
w/cm Ratio	0.39	

3.3.1 Instrumentation

Instrumentation of OC-19 included the following sensor and data collection components: TIPTM Thermal Wire and Thermal Acquisition Ports (TAP). Using a combination of plastic wire ties and PEX tie wire, four 50-foot thermal wires were installed along the length of the reinforcement cage and positioned roughly 90 degrees apart radially (Figure 3.29). An additional center thermal wire, 25 feet in length, was installed along an additional 10-foot rebar positioned and secured using rebar cross bracing at the center of the reinforcement cage (Figure 3.30) located

6.5 feet below the top of the drilled shaft. The length of the center rebar made use of the first 10 out of 25 available sensors along the center thermal wire. The remaining 15 sensors were positioned across the shaft diameter and secured to the center rebar cross bracing (Figure 3.31). These remaining sensors provided for temperature data to be collected along three cross bracing legs. Figure 3.32 shows the fully instrumented reinforcement cage ready to be placed for concrete casting, and Figure 3.33 provides a sensor layout schematic. This schematic includes the full reinforcement cage layout (not to scale) (left), a plan view of the sensors installed along the cross bracing (top right), and a detail view of the full center wire with numbered sensors (bottom right). The starred sensor in the top right schematic represents sensor number 10, the first sensor located on the cross-bracing configuration. The thermal wire connector ends and above-concrete sensors were bundled and protected using heavy duty plastic bags tightly wrapped in all-weather duct tape to ensure they remained clean during concrete placement. Once concrete placement was complete, the protective plastic was removed, and TAP boxes were connected to each thermal wire.

Figure 3.29 Installation of thermal wires along the length of the OC-19 reinforcement cage. [This is a photo taken from the top of the OC-19 reinforcement cage showing installed cage thermal wires positioned roughly 90 degrees apart radially.]

Figure 3.30 Installation of the center rebar cross bracing and the bottom 15 sensors of the center thermal wire in an across-shaft configuration along the bottom rebar cross bracing in OC-19 reinforcement cage.

[This is two side-by-side photos taken inside the OC-19 reinforcement cage showing a graduate student installing the center rebar cross bracing and the bottom 15 sensors of the center thermal wire. The left photo shows a graduate student securing the rebar cross bracing with rebar tie wire. The right photo shows a graduate student securing the bottom 15 sensors of the thermal wire to the bottom rebar cross bracing with a PEX rebar tie gun.]

Figure 3.31 Complete installation of center thermal wire inside OC-19 reinforcement cage. [This is a photo taken inside the OC-19 reinforcement cage showing center thermal wire installation including across shaft sensor configuration. The bottom 15 thermal sensors are shown to be installed on three out of four legs of the bottom cross bracing.]

Figure 3.32 Fully instrumented OC-19 reinforcement cage ready to be placed for concrete casting. [This is a photo taken from outside the top of the OC-19 reinforcement cage. All cage thermal wires and center thermal wire have been installed, and all above-concrete sensors and wire connector ends have been bundled and secured in heavy-duty plastic bags and Gorilla tape.]

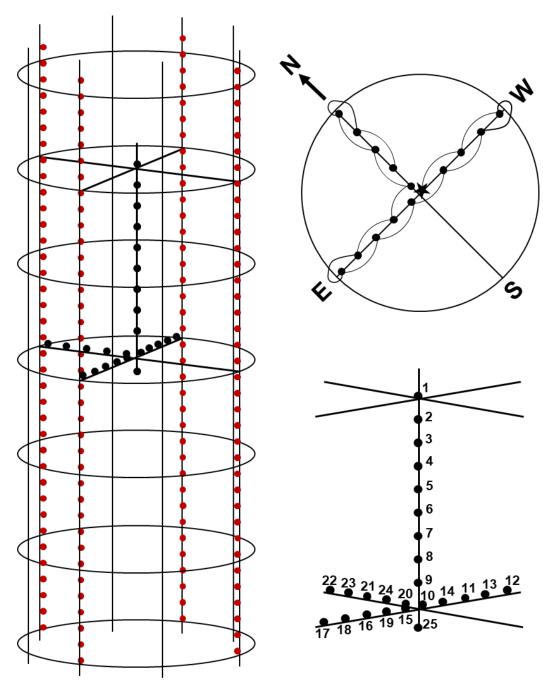


Figure 3.33 OC-19 thermal sensor layout schematic.

[This is a diagram illustrating the thermal sensor layout for drilled shaft OC-19. On the left shows a full reinforcement cage layout with four thermal wires located at the cage with sensors highlighted in red and a center thermal wire with sensors highlighted in black. On the right shows a detailed view of the center wire sensor layout with 10 sensors along a center rebar and the remaining 15 sensors along the rebar cross bracing in a N-S and E-W across-shaft configuration.]

3.3.2 Collected Data

Temperature measurement data from the installed thermal wires, environmental conditions during construction, FDOT drilled shaft log, concrete mix design, and mill certificates associated with drilled shaft OC-19 were collected and cataloged. Table 3.19 presents the Temperature Analysis Shaft Information for OC-19.

Table 3.19 OC-19 temperature analysis shaft information.

Data Collection Start Time:	11/23/21 15:34	
Drilled Shaft Diameter:	84 inches	
Cage Diameter:	60 inches	
Drilled Shaft Length:	36.96 feet	
Average Temperature:	117.1°F	
Local Minimum	109.85°F at 29 feet on Wire 3	
Temperature:	109.83 F at 29 feet on whe 3	
Local Maximum	130.44°F at 7 feet on Wire 2	
Temperature:	130.44 1 at / feet off wife 2	

Figure 3.34 presents all longitudinal temperature data versus depth for OC-19 recorded 47 hours after concreting. This is when peak average cage temperature occurred. The average temperature profile is given as the bold black line marker also denoted as "AVG". The location of peak average cage temperature occurred in the oversized temporary surface casing at 6 feet with the temperature measurement of 130.67°F. This depth location was used to plot the temperature evolution at that depth for the entire testing duration (Figure 3.35).

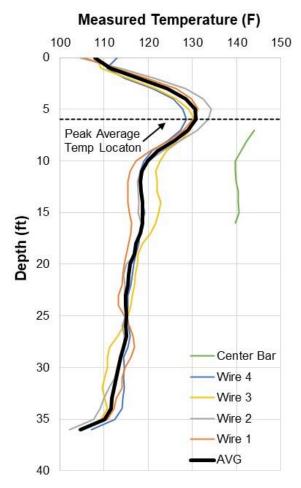


Figure 3.34 Plot presenting OC-19 temperature versus depth data at peak average cage temperature (47 hours into testing).

[This is a plot presenting temperature data on the x-axis versus depth data on the y-axis and includes temperature measurements from all four thermal wires installed at the reinforcement cage as well as the thermal wire installed along a center rebar. The depth reaches just past 35 feet, and temperature measurements range from approximately 110°F to 142°F.]

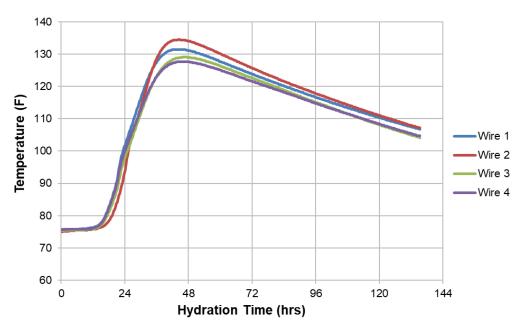


Figure 3.35 Plot presenting OC-19 temperature versus time data at a depth of 6 feet, where peak average cage temperature occurred (47 hours into testing).

[This is a plot presenting temperature data on the y-axis versus time on the x-axis at a depth of 6 feet and includes temperature measurements from all four thermal wires installed at the reinforcement cage. The time ranges from 0 to 135 hours, and the temperature measurements range from approximately 75°F to 135°F.]

Figures 3.36 and 3.37 present the data that was collected at the time of peak center wire temperature, where Figure 3.36 is temperature versus depth and Figure 3.37 is temperature evolution over time. The peak center wire temperature occurred in the first sensor at a depth of 7 feet and was measured to be 144.03°F. Looking at Figure 3.34 it can be inferred that an even higher core temperature was likely to have occurred at a depth of 5 feet which was more in the center of the oversized casing region.

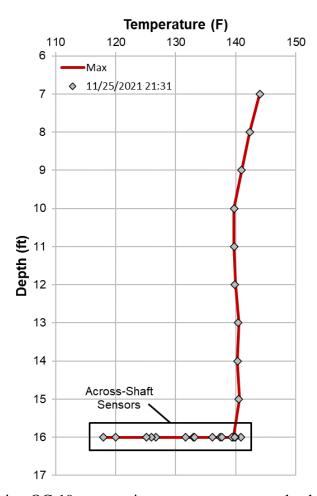


Figure 3.36 Plot presenting OC-19 center wire temperature versus depth data at the time of peak temperature of the center wire (49 hours into testing).

[This is a plot presenting temperature data on the x-axis versus depth data on the y-axis and includes temperature measurements from the thermal wire installed along a center rebar. The depth begins at 7 feet and ends at 16 feet where the sensors were transitioned to an across-shaft configuration, and temperature measurements range from approximately 118°F to 144°F.]

Figure 3.37 Plot presenting OC-19 center wire temperature versus time data at a depth of 1 foot, where peak center wire temperature occurred.

[This is a plot presenting temperature data on the y-axis versus time on the x-axis where the depth of interest is 7 feet and includes temperature measurements from the thermal wire installed along a center rebar. The time ranges from 0 to 144 hours, and the relevant temperature measurements range from approximately 75°F to 144°F.]

Figure 3.38 presents the across-shaft temperature distribution. The center bar was located at a zero radius and the cage was at plus or minus 30 inch radial locations relative to the center bar. The direction of the individual cage wire locations is also related to the radial locations. Looking back at Figure 3.31, the instrumentation that spans across the full shaft corresponded to the wire 2 to 4 direction (E-W). The perpendicular partial instrumentation corresponds to data extending from the center to the wire 1 cage location (north). Parabolic functions were also fit to these temperature distributions and returned R² values of 0.9961 and 0.9999, respectively. Figure 3.38 also shows the temperature differential between the top of the parabola and the cage location to be approximately 23°F. Temperature differential between parabola peak and cage location was also evaluated for the I-395, SR 836, and I-95 Intersection project discussed in Section 3.4, where several datasets have been collected from smaller elements.

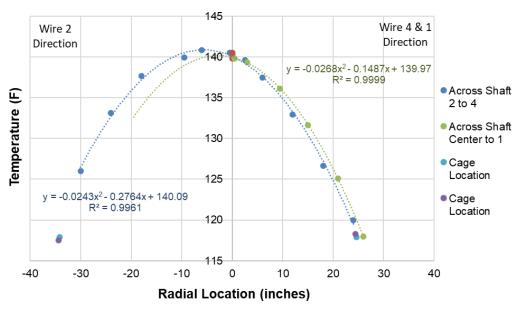


Figure 3.38 Plot presenting OC-19 data taken from the center wire sensors installed in an across-shaft configuration.

[This is a plot presenting temperature data on the y-axis versus radial location on the x-axis where the center of the shaft is located at a zero radius and the cage is at plus or minus radial locations in inches relative to center. There is a full temperature distribution for the portion across shaft between cage wires 2 and 4, and there is a half temperature distribution for the portion across shaft between the center and cage wire 1. The temperature differential between the cage locations and the peak is approximately 23°F. The plot also includes parabolic equations for each distribution series and R values for each fit. These R values are 0.9961 and 0.9999, respectively.]

Similar to the Temperature Analysis Shaft Information, the Radius Analysis Shaft Information is presented in Table 3.20. Figure 3.39 presents the radius versus depth profile for OC-19. This plot also includes concrete cover results based on the size and location of the reinforcement cage. Figure 3.40 plots TIP Reporter-generated 3D radius view of the shaft.

Table 3.20 OC-19 radius analysis shaft information.

Average Radius:	37.13 inches
Local Minimum Radius:	34.56 inches at 36 feet at Wire 2
Local Maximum Radius:	42.28 inches at 5 feet at Wire 2

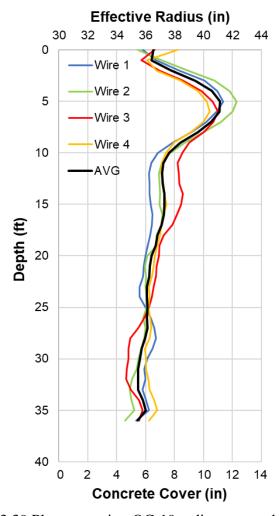


Figure 3.39 Plot presenting OC-19 radius versus depth data.

[This is a plot presenting radius and concrete cover data on the x-axis versus depth data on the y-axis and includes radius values for the locations of all four thermal wires installed at the reinforcement cage. The depth reaches 36 feet, and radius values range from approximately 35 to 42 inches. Concrete cover values range from approximately 5 to 12 inches.]

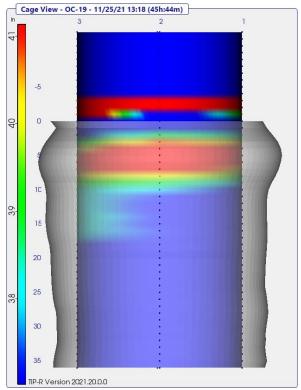


Figure 3.40 OC-19 3D radius view (not to scale).

[This is a plot generated by TIP reporter showing 3D radius view of OC-19. It can be seen that the general shape of the drilled shaft is not symmetrical with varying concrete cover.]

3.4 I-395, SR 836, and I-95 Intersection in Miami, Florida

While this study is named to focus on and determine the peak temperature of drilled shafts, all cementitious structural elements have the potential of generating elevated internal temperature distributions. Above-ground structural elements have unique temperature control issues not directly relatable to elements cast completely underground. Augered Cast-in-Place (ACIP) piles are similar to drilled shafts although their size is generally limited to be 4 feet in diameter or less. Nevertheless, temperature data from ACIP piles are just as valuable as that from drilled shafts.

ACIP piles installed in Miami for the I-395 Expansion Project were reviewed for inclusion in this study where high temperatures were recorded. All piles installed on this project were instrumented with thermal wire systems where four wires were installed on the cage. Many of the piles included a center bar with a fifth thermal wire (exactly like this Task). In these cases, the data was directly applicable to the Task goals. This site was particularly interesting given the measured temperatures were much higher than expected for such small elements. This was due to a high cementitious materials content discussed later. Table 3.21 presents a summary of twenty 36-inch diameter auger-cast-in-place elements where center bar instrumentation was included (not listed). The rationale for including center wire measurements was to confirm core temperatures were not

exceeding safe limits. However, peak center bar temperatures do not reflect peak core temperatures if the cage is not centered in the pile. Likewise, the peak cage temperature may not reflect the hottest portion of the pile (at depth). So, the Table values list how and where the peak temperatures occurred:

- Max Avg: the maximum average temperature which represents the average of all four wire strings at a given depth.
- Elevation at Max: the location along the pile length where the Max Avg occurred
- Max Cage: the highest cage temperature recorded which may not occur at the same depth as the Max Avg
- Avg at Peak: the average of all four sensors at the depth where the Max Cage was measured.
- Avg Pile Temp: the average of all sensors from all depths which is used to determine a temperature to radius constant
- Grout Volume and Pile Length: used to determine the average pile radius

Table 3.21 Summary of ACIP cage temperature measurements.

Bridge	Pile #	Nom Pile Size	Grout Age	Max Avg	Elevation at Max	Max Cage	Avg at Peak	Avg Pile Temp	Grout Volume	Pile Length
		(in)	(hrs)	(F)	(ft)	(F)	(F)	(F)	(cuyd)	(ft)
8	19	36	27:47:00	174.5	-87.0	180.4	173.6	168.8	46.8	130.4
8	42	36	31:10:00	167.0	-68.0	176.8	166.2	160.8	46.5	130.5
8	43	36	30:49:00	175.5	-61.0	184.0	175.5	165.5	46.7	130.3
8	49	36	31:45:00	163.7	-66.0	171.5	163.7	156.5	46.7	127.2
8	59	36	31:52:00	170.1	-86.0	176.9	170.1	161.5	45.9	131.2
8	61	36	29:05:00	173.13	-87.3	178.25	173.13	165.16	47.5	130.2
8	66	36	29:02:00	162.0	-72.0	168.7	160.7	156.3	45.0	125.2
8	71	36	29:11:00	172.0	-90.0	177.6	170.6	165.8	46.2	131.0
8	79	36	29:21:00	165.5	-86.0	171.6	165.5	158.2	45.1	126.4
8	80	36	33:23:00	161.9	-72.0	167.5	161.9	152.6	46.3	131.1
8	85	36	29:00:00	171.0	-95.0	171.6	167.1	158.2	44.3	126.6
8	86	36	29:40:00	168.0	-72.0	172.7	167.5	159.8	46.6	130.2
8	91	36	31:28:00	162.0	-71.0	163.0	161.0	154.8	41.2	126.8
8	95	36	33:39:00	160.3	-59.0	168.8	160.3	152.2	44.3	126.3
8	99	36	29:21:00	157.0	-51.0	169.5	157.0	151.3	41.6	117.2
8	100	36	33:29:00	156.6	-73.0	168.1	156.6	149.7	38.1	127.0
8	107	36	26:33:00	167.0	-70.0	174.4	165.6	154.3	40.2	126.4
8	108	36	27:51:00	162.0	-60.0	171.1	160.1	146.3	41.4	126.9
8	112	36	28:07:00	163.0	-68.0	173.1	162.5	153.2	43.6	127.1
8	118	36	28:05:00	163.0	-78.0	170.0	161.0	154.5	44.4	127.3
8	123	36	26:38:00	164.2	-69.0	173.5	164.2	152.5	41.4	128.4

In several cases, the Max Cage temperatures exceeded the FDOT upper temperature limit of 180°F. Center wire temperatures (Figure 3.41) were often higher than max cage measurements but in some cases were similar or lower indicating lateral movement of the cage within the pile where one side of the cage moved nearer the center of the pile.

A second outcome of the center wire measurements is and was to establish a simplistic center of pile temperature determination method based on empirical results. Thereby the average cage temperature profile was compared to the center bar temperature profile (Figure 3.41) to determine a cage to center of pile differential temperature for this grout mix design and pile size.

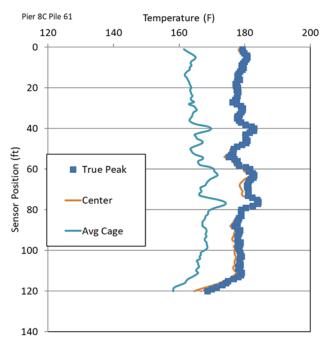


Figure 3.41 Typical average cage and center wire temperature profiles.

[This is a plot presenting temperature data on the x-axis and sensor position in feet on the y-axis. Three series of data are included on this plot: average temperature located at the reinforcement cage, center temperature, and a calculated true peak.]

The cage to center temperature difference at any given depth somewhat confirmed a constant relationship where the cage diameter and pile diameter were constant. For these piles the upper 40 feet of cage was larger in diameter to meet structural bending resistance needs, the lower portion of the cage was reduced in diameter and number of main bars to a minimum amount needed to extend thermal integrity sensors to the bottom of the piles. Therefore, warmer cage temperatures are observed in the lower half along with smaller cage to core differentials (Figure 3.42).

On average, the upper portion of the piles showed a differential temperature of 15°F, and the lower portion of the piles was 12°F (Table 3.22). Localized worst case differential values were somewhat

higher, as high as 20°F in one case. The usefulness of this approach and a goal for this study is and was to use cage-based measurements to predict the most probable core temperature. This was extended to all piles where cage-based temperature measurements should not exceed 165°F (180°F-15°F) for 36-inch piles in the upper portion and 170°F (180°F-10°F) in the lower portions (based on less restrictive 10°F differential and not the 12°F average differential shown in Table 3.22). A similar 10°F differential was also applied to the smaller 30-inch piles on the project based on similar center-to-cage radial distance. Data from the 30-inch piles was also obtained for this project and added to the database.

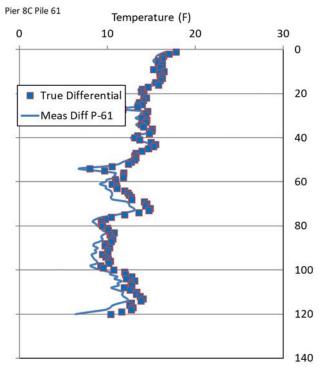


Figure 3.42 Temperature versus depth plot illustrating warmer cage temperatures are observed in the lower half along with smaller cage to core differentials.

[This is a plot presenting temperature data on the x-axis and sensor position in feet on the y-axis. Two series of data are included on this plot: true differential and measured difference.]

Table 3.22 Average cage to peak to cage temperature differentials for 36-inch elements.

	Avg Temp Diff (F)		Peak Temp Diff (F)	
Pile	Upper	Lower	Upper	Lower
P-26	15.3	10.3	18.0	15.3
P-42	15.5	13.5	17.7	17.0
P-43	14.4	11.6	16.4	15.6
P-49	12.7	9.8	14.4	11.2
P-59	14.4	11.6	16.4	15.6
P-61	14.9	11.6	17.8	14.9
P-71	15.1	11.3	17.1	13.5
P-80	15.5	12.9	19.9	17.7
P-95	15.1	10.6	17.9	13.7
P-107	15.3	15.9	18.2	24.0
P-108	14.1	11.5	19.4	18.9
P-112	13.6	12.6	15.1	16.0
P-118	15.2	9.5	18.0	11.9
P-123	12.3	10.1	14.7	15.5
Avg	15	12	17	16

Both Figures 3.41 and 3.42 note the true center and differential temperatures are needed to account for when a center bar (and wire) is not truly centered due to cage movement. An algorithm was developed to correct for cage movement based on a best fit equation, discussed later. In short, the algorithm iterates the cage position until the average cage temperature on both sides of the shaft best fits the polynomial curve formed by the center and opposite side cage temperature measurements (Figure 3.43). This is performed in both the north/south and east/west directions.

Figure 3.43 shows the lateral temperature distribution for the same pile shown in Figures 3.41 and 3.42 where the pile size was 36 inches in diameter, the center of pile is plotted at 18 inches on the x-axis, the radial location of the thermal sensors was ±10.75 inches from center of cage, the computed E-W offset was 1.9 inches, and the N-W offset was 0.4 inches. The cage and center of cage locations are shown as the dashed black lines.

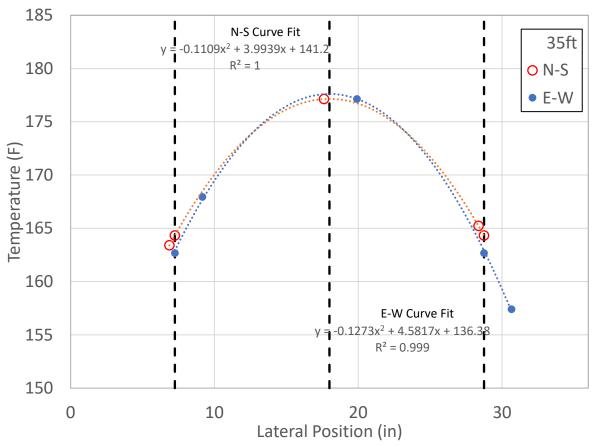


Figure 3.43 Best fit cage position based on the best fit average cage temperature. [This is a plot presenting lateral sensor position in inches on the x-axis and temperature data on the y-axis for sensors at a depth of 35 feet. Data in the N-S direction and E-W direction are included.]

3.5 North Florida Avenue and Sinclair Hills Drilled Shaft, Tampa, Florida

The Sinclair Hills drilled shaft was constructed by R.W. Harris, Inc. on July 7, 2022, on the east side of North Florida Avenue just south of Sinclair Hills Road (Figure 3.44). This drilled shaft was designed to be 72 inches in diameter, 36 feet long, and was cast with an 84-inch diameter, partial-length temporary casing (Figure 4.45).

Figure 3.44 Satellite imagery illustrating the general location of the Sinclair Hills drilled shaft. [This is a photo of satellite imagery illustrating the general location of the Sinclair Hills drilled shaft, which is denoted by a yellow star. This shaft is located on N. Florida Avenue just south of Sinclair Hills Road in Tampa, Florida.]

Figure 3.45 Excavation of the Sinclair Hills drilled shaft with partial-length casing installed. [This is a photo showing the construction location of the Sinclair Hills drilled shaft. The location is still in the process of being augered with slurry flowing from a large hose line. The partial-length casing is already placed inside the augered portion.]

Testing began on July 7, 2022, and concluded on July 12, 2022, during which the air temperature averaged approximately 85°F. The concrete mix proportions are provided in Table 3.23 with the complete concrete mix design submittal document and all original concrete delivery tickets included in Appendix D.

Table 3.23 Sinclair Hills drilled shaft concrete mix proportions.

Material	Amount	
Cement (Type IL)	564 lb	
Fly Ash (Class F)	140 lb	
Coarse Aggregate	1614 lb	
Fine Aggregate	1324 lb	
Water	283 lb	
Admixture (Air)	2.5 oz/cy	
Admixture (Stabilizer)	1-15 oz/cwt CM	
Admixture (Water Reducer #2)	1-15 oz/cwt CM	
Cementitious Material	704 lb	
Fly Ash Percentage	20%	
w/cm Ratio	0.40	

3.5.1 Instrumentation

Instrumentation of the Sinclair Hills drilled shaft included the following sensor and data collection components: TIPTM Thermal Wire and Thermal Acquisition Ports (TAP). Using a combination of plastic wire ties and PEX tie wire, four 90-foot thermal wires were installed along the length of the reinforcement cage and positioned roughly 90 degrees apart around the circumference of the cage (Figure 3.46). An additional center thermal wire, 25 feet in length, was installed in an across-shaft cross configuration along rebar cross bracing at the center of the reinforcement cage (Figures 3.47 and 3.48) located 7 feet below the top of the drilled shaft. Figure 3.49 shows the fully instrumented reinforcement cage ready to be placed in the excavation. Figure 3.50 shows the sensor layout schematic unique to this shaft. This schematic includes the full reinforcement cage layout (not to scale, left) and a plan view of the sensors installed along the cross bracing (right). The thermal wire connector ends and above-concrete sensors were bundled and protected using heavy duty plastic bags tightly sealed with all-weather duct tape to ensure they remained clean during concrete placement. Once concrete placement was complete, the protective plastic was removed, and TAP boxes were connected to each thermal wire.

Figure 3.46 Installation of thermal wires along the length of the Sinclair Hills drilled shaft reinforcement cage.

[This is a photo taken from the top of the Sinclair Hills shaft reinforcement cage showing graduate students installing cage thermal wires positioned roughly 90 degrees apart radially.]

Figure 3.47 Installation of the rebar cross bracing and the center thermal wire in an across-shaft configuration along the rebar cross bracing.

[This is two side-by-side photos taken inside the Sinclair Hills shaft reinforcement cage showing graduate students installing the center rebar cross bracing and the center thermal wire. The left photo shows a graduate student securing the rebar cross bracing with rebar tie wire. The right photo shows graduate students securing the thermal wire to rebar cross bracing with a PEX rebar tie gun.]

Figure 3.48 Complete installation of center thermal wire inside Sinclair Hills drilled shaft reinforcement cage.

[This is a photo taken inside the Sinclair Hills shaft reinforcement cage showing center thermal wire installation including across shaft sensor configuration.]

Figure 3.49 Fully instrumented Sinclair Hills drilled shaft reinforcement cage ready to be placed for concrete casting.

[This is a photo taken from outside the top of the Sinclair Hills shaft reinforcement cage. All cage thermal wires and center thermal wire have been installed, and all above-concrete sensors and wire connector ends have been bundled and secured in heavy-duty plastic bags and Gorilla tape.]

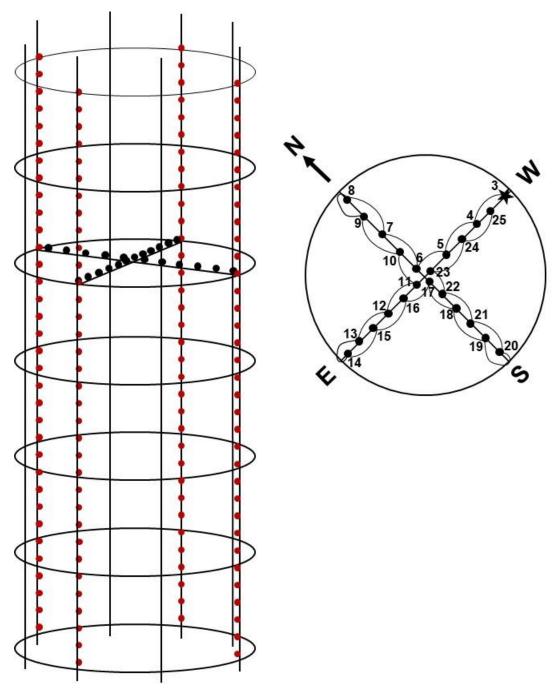


Figure 3.50 Sinclair Hills drilled shaft thermal sensor layout schematic.

[This is a diagram illustrating the thermal sensor layout for the Sinclair Hills drilled shaft. On the left shows a full reinforcement cage layout with four thermal wires located at the cage with sensors highlighted in red and a center thermal wire with sensors highlighted in black. On the right shows a detailed view of the center wire sensor layout with all 25 sensors along rebar cross bracing in a N-S and E-W across-shaft configuration.]

3.5.2 Collected Data

Temperature measurement data from the installed thermal wires, environmental conditions during construction, concrete mix design, and mill certificates associated with the Sinclair Hills drilled shaft were collected and cataloged. Table 4.24 presents the Temperature Analysis Shaft Information for the Sinclair Hills drilled shaft.

Table 3.24 Sinclair Hills drilled shaft temperature analysis shaft information.

Data Collection Start Time:	7/7/22 17:41
Drilled Shaft Diameter:	84 inches
Cage Diameter:	72 inches
Drilled Shaft Length:	33 feet
Average Temperature:	129.53°F
Local Minimum Temperature:	121.66°F at 16 feet on Wire 2
Local Maximum Temperature:	144.16°F at 7 feet on Wire 3

Figure 3.51 presents all longitudinal temperature data versus depth for the Sinclair Hills drilled shaft recorded 23 hours after concreting. This is when peak average cage temperature occurred. The average temperature profile is given as the bold black line marker also denoted as "AVG." The location of peak average cage temperature is marked at 4 feet with a temperature measurement of 144.11°F. This depth location was used to plot the temperature evolution over time at that depth for the entire testing duration (Figure 3.52). In this plot it can be seen that the sensor in Wire 2 exhibited the telltale signs of intermittent readings from sensor failure. Fortunately, this did not significantly affect the analysis of this shaft.

Figure 3.53 presents the across-shaft temperature distribution where the center of the rebar cross bracing is located at a zero radius and the cage is at plus or minus radial locations in inches relative to the center of the rebar cross bracing. The direction of the individual cage wire locations is also related to the radial locations. Parabolic functions were fit to these temperature distributions and each returned an R² value of 0.9975. Figure 3.53 also shows that the temperature differential between the top of the parabola and the cage location to be approximately 40°F. However, by evaluating the slope of the function at a cage radius of 36 inches, the gradient can be calculated to be approximately 1.67 °F/in. When extending this slope to the edge of shaft with a 6 inch cover an additional 10°F can be included in the true core to shaft edge differential temperature, or 50°F.

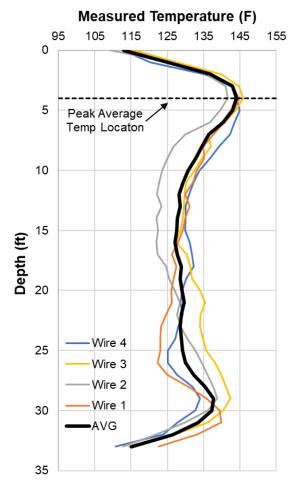


Figure 3.51 Plot presenting Sinclair Hills drilled shaft temperature versus depth data at peak average cage temperature (23 hours into testing).

[This is a plot presenting temperature data on the x-axis versus depth data on the y-axis and includes temperature measurements from all four thermal wires installed at the reinforcement cage. The depth reaches 34 feet, and temperature measurements range from approximately 115°F to 142°F.]

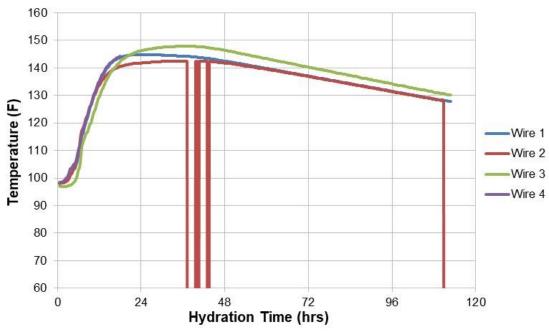


Figure 3.52 Plot presenting Sinclair Hills drilled shaft temperature versus time data at a depth of 4 feet, where peak average cage temperature occurred (23 hours into testing).

[This is a plot presenting temperature data on the y-axis versus time on the x-axis at a depth of 4 feet and includes temperature measurements from all four thermal wires installed at the reinforcement cage. The time ranges from 0 to 130 hours, and the temperature measurements range from approximately 99°F to 147°F.]

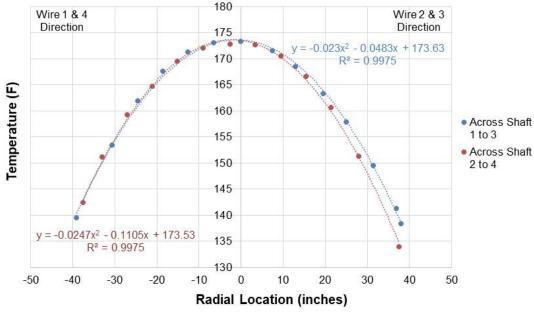


Figure 3.53 Plot presenting Sinclair Hills drilled shaft data taken from the center wire sensors installed in an across-shaft configuration.

[Figure 3.53 Detailed Description: This is a plot presenting temperature data on the y-axis versus radial location on the x-axis where the center of the shaft is located at a zero radius and the cage is at plus or minus radial locations in inches relative to center. There are full temperature distributions for the portion across shaft between cage wires 2 and 4 and wire 1 and 3, respectively. The temperature differential between the cage locations and the peak is approximately 40°F. The plot also includes parabolic equations for each distribution series and R values for each fit. These R values are each 0.9975.]

Similar to the Temperature Analysis Shaft Information, the Radius Analysis Shaft Information is presented in Table 3.25. Rather than average, minimum, and maximum temperature information, this provides average, minimum, and maximum shaft radius information. Figure 3.54 presents the radius versus depth profile for the Sinclair Hills drilled shaft. This plot also includes concrete cover results based on the size and location of the reinforcement cage.

Table 3.25 Sinclair Hills drilled shaft radius analysis shaft information.

Average Radius:	43.74 inches
Local Minimum Radius:	40.05 inches at 16 feet at Wire 2
Local Maximum Radius:	48.24 inches at 3 feet at Wire 3

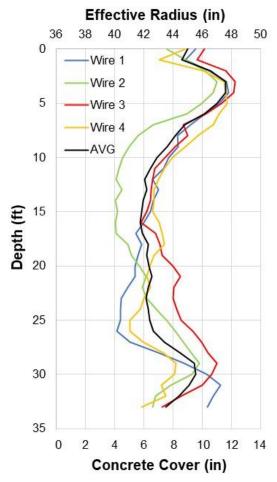


Figure 3.54 Plot presenting Sinclair Hills drilled shaft radius versus depth data. [This is a plot presenting radius and concrete cover data on the x-axis versus depth data on the y-axis and includes radius values for the locations of all four thermal wires installed at the reinforcement cage. The depth reaches 34 feet, and radius values range from approximately 40 to 48 inches. Concrete cover values range from approximately 4 to 12 inches.]

3.6 US 17 Drilled Shaft 1-4, Bartow, Florida

Bartow drilled shaft 1-4 was constructed by Reliable Constructors, Inc. on November 30, 2022, at the northwest corner of US 17 and Spirit Lake Road (Figure 3.55). This drilled shaft was designed to be 54 inches in diameter, 17 feet long, and was cast with a 59-inch diameter, partiallength temporary surface casing (Figure 3.56).

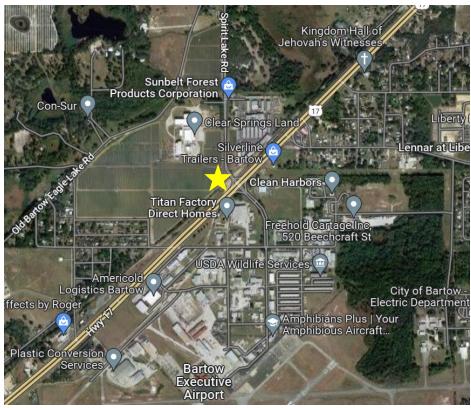


Figure 3.55 Satellite imagery illustrating the general location of Bartow drilled shaft 1-4. [This is a photo of satellite imagery illustrating the general location of the Bartow drilled shaft, which is denoted by a yellow star. The main crossroads are US-17 and Spirit Lake Road in Bartow, Florida. The Bartow shaft is located in the northeast quadrant on the north shoulder of US-17 westbound just west of Spirit Lake Road.]

Figure 3.56 Partially augered location of Bartow shaft 1-4 with partial-length casing installed. [This is a photo showing the construction location of the Bartow drilled shaft. The location is still in the process of being augered. The partial-length casing is already placed inside the augered portion.]

Testing began on November 30, 2022, and concluded on December 3, 2022, during which the air temperature averaged approximately 67°F. The concrete mix proportions for each concrete truck are provided in Tables 3.26 and 3.27 with original concrete delivery tickets and mill certificates included in Appendix E.

Table 3.26 Bartow shaft 1-4 truck #1 (9 cubic yards) concrete mix proportions.

Material	Amount
Cement (Type IL)	2,510 lb
Slag	3,985 lb
Coarse Aggregate (1.7% Moisture)	16,380 lb
Fine Aggregate (4.1% Moisture)	10,240 lb
Batch Water	1,857.59 lb
Admixture (Air)	7 oz.
Admixture (Water Reducer #1)	519 oz
Admixture (Water Reducer #2)	132 oz.
Cementitious Material	6,495 lb
Slag Percentage	61%
w/cm Ratio	0.39

Table 3.27 Bartow shaft 1-4 truck #2 (4 cubic yards) concrete mix proportions.

Material	Amount
Cement (Type IL)	1,135 lb
Slag	1,755 lb
Coarse Aggregate (1.7% Moisture)	7,280 lb
Fine Aggregate (4.1% Moisture)	4,580 lb
Batch Water	824.67 lb
Admixture (Air)	3 oz.
Admixture (Water Reducer #1)	231 oz.
Admixture (Water Reducer #2)	57 oz
Cementitious Material	2,890 lb
Slag Percentage	61%
w/cm Ratio	0.39

3.6.1 Instrumentation

Instrumentation of Bartow shaft 1-4 included the following sensor and data collection components: TIPTM Thermal Wire and Thermal Acquisition Ports (TAP). Using a combination of plastic wire ties and PEX tie wire, four 56-foot thermal wire cutoffs from previously used 90-foot thermal wires were installed as four loops down along the length of the reinforcement cage, then returned back up the cage on an additional smaller rebar slightly offset approximately 3 inches inside the reinforcement cage using plastic spacers (Figure 3.57). This provided for thermal sensors to be aligned longitudinally but offset radially toward the center of shaft from the cage wire

locations. Once fully installed, the distance between each cage sensor and corresponding offset sensor was measured. Each thermal wire was positioned roughly 90 degrees apart around the circumference of the cage. Figure 3.58 shows the fully instrumented reinforcement cage ready to be placed in the excavation. Figure 3.59 provides a sensor layout schematic. The thermal wire connector ends and above-concrete sensors were bundled and protected using heavy duty plastic bags tightly wrapped in all-weather tape to ensure they remained clean during concrete placement. Once concrete placement was complete, the protective plastic was removed, and TAP boxes were connected to each thermal wire.

Figure 3.57 Close up view of thermal wire installed at the reinforcement cage with offset return wire.

[This is a detail view of the inside of the Bartow shaft reinforcement cage showing a thermal wire installed along a cage rebar with a concentrically offset smaller rebar on which the thermal wire is returned.]

Figure 3.58 Fully instrumented Bartow shaft 1-4 reinforcement cage ready to be placed for concrete casting.

[This is a photo taken from outside the top of the Bartow shaft reinforcement cage. All cage thermal wires and center thermal wire have been installed, and all above-concrete sensors and wire connector ends have been bundled and secured in heavy-duty plastic bags and Gorilla tape.]

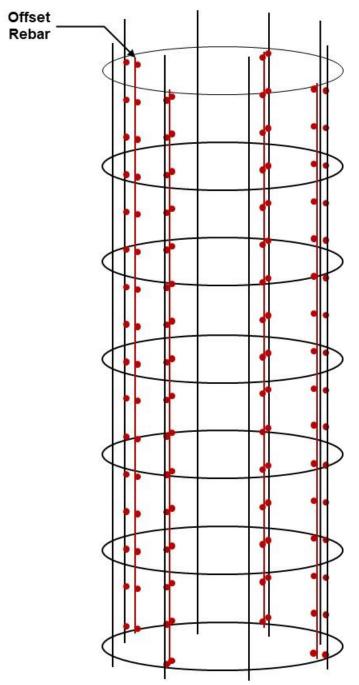


Figure 3.59 Bartow shaft 1-4 thermal sensor layout schematic.

[This is a diagram illustrating the thermal sensor layout the Bartow drilled shaft with all sensors highlighted in red.]

In addition to thermal wire sensors, several runs of thermal integrity probe testing were performed both one day and two days after concreting. The data collected via probe testing was not used below for traditional thermal integrity analysis but was analyzed using the individual infrared sensor readings. These data and subsequent analyses will be presented in detail in Chapter 4.

3.6.2 Collected Data

Temperature measurement data from the installed thermal wires, environmental conditions during construction, FDOT drilled shaft log, concrete mix design, and mill certificates associated with drilled shaft Bartow shaft 1-4 were collected and cataloged. Table 3.28 presents the Temperature Analysis Shaft Information for Bartow shaft 1-4.

Table 3.28 Bartow shaft 1-4 temperature analysis shaft information.

00010 0120 200100 0 000010 1 0 00111	services and parameters and a services and a services and a service and	
Data Collection Start Time:	11/30/22 14:12	
Drilled Shaft Diameter:	54 inches	
Cage Diameter:	42 inches	
Drilled Shaft Length:	17.02 feet	
Average Temperature:	121.65°F	
Local Minimum	100.83°F at 0 feet on Wire 1	
Temperature:		
Local Maximum	130.99°F at 4 feet on Wire 1	
Temperature:	130.99 F at 4 feet off when I	

Figure 3.60 presents all longitudinal temperature data versus depth for Bartow shaft 1-4 recorded 28 hours after concreting. This is when peak average cage temperature occurred. The average temperature profile is given as the bold black line marker also denoted as "AVG." The location of peak average cage temperature is marked at 4 feet with the temperature measurement of 128.49°F shown. This depth location was used to plot the temperature evolution over time at that depth for the entire testing duration (Figure 3.61).

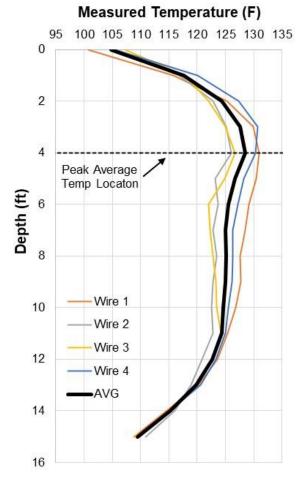


Figure 3.60 Plot presenting Bartow shaft 1-4 temperature versus depth data at peak average cage temperature (28 hours into testing).

[This is a plot presenting temperature data on the x-axis versus depth data on the y-axis and includes temperature measurements from all four thermal wires installed at the reinforcement cage. The depth reaches 15 feet, and temperature measurements range from approximately 100°F to 131°F.]

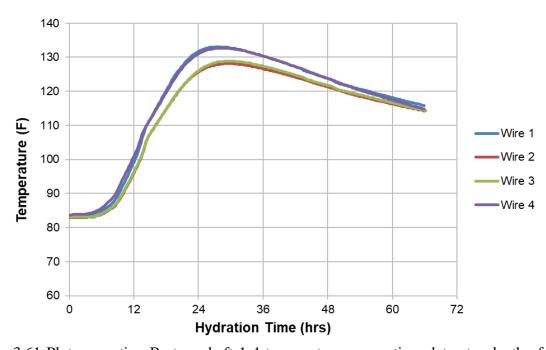


Figure 3.61 Plot presenting Bartow shaft 1-4 temperature versus time data at a depth of 4 feet, where peak average cage temperature occurred (28 hours into testing). [This is a plot presenting temperature data on the y-axis versus time on the x-axis at a depth of 4 feet and includes temperature measurements from all four thermal wires installed at the reinforcement cage. The time ranges from 0 to 66 hours, and the temperature measurements range from approximately 84°F to 133°F.]

Figure 3.62 presents temperature gradient in °F/inch versus depth. The temperature gradient was calculated on one-foot depth increments by subtracting the temperature measured at the reinforcement cage location from the corresponding offset temperature measurement then dividing by each measured offset distance. Based on the across-shaft temperature distributions measured from the Sinclair Hills drilled shaft and OC-19, the relationship between temperature and distance at this location was assumed to be linear.

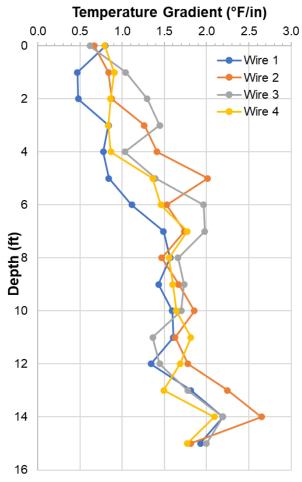


Figure 3.62 Plot presenting Bartow shaft 1-4 temperature gradient versus depth. [This is a plot presenting temperature data on the x-axis versus depth data on the y-axis and includes temperature gradients from all four thermal wires. The depth reaches 15 feet, and temperature gradients range from approximately 0.5°F/in to 2.6°F/in.]

Similar to the Temperature Analysis Shaft Information, the Radius Analysis Shaft Information is presented in Table 3.29. Figure 3.63 presents the radius versus depth profile for Bartow shaft 1-4. This plot also includes concrete cover results based on the size and location of the reinforcement cage.

Table 3.29 Bartow shaft 1-4 radius analysis shaft information.

Average Radius:	28.1 inches
Local Minimum Radius:	27.09 inches at 6 feet at Wire 3
Local Maximum Radius:	29.68 inches at 2 feet at Wire 4

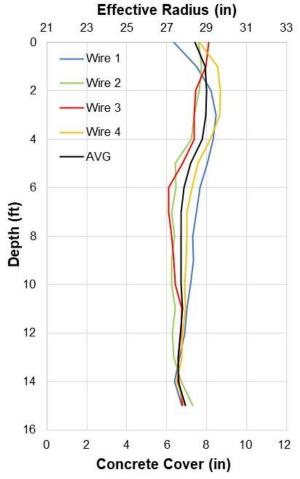


Figure 3.63 Plot presenting Bartow shaft 1-4 radius versus depth data.

[This is a plot presenting radius and concrete cover data on the x-axis versus depth data on the y-axis and includes radius values for the locations of all four thermal wires installed at the reinforcement cage. The depth reaches 15 feet, and radius values range from approximately 27 to 30 inches. Concrete cover values range from approximately 6 to 9 inches.]

3.6.3 Data Availability

All collected data was archived in various formats and posted on the USF research website for future queries (geotech.eng.usf.edu/downloads/PeakTemperatureProject).

Chapter Four: Data Analysis and Modeling

This chapter discusses the data analysis and modeling of drilled shaft temperature distributions. In addition to the collection of new temperature data, numerical modeling in COMSOL Multiphysics® was performed. A total of 330 modeled radial temperature distributions over time (from 1 to 200 hours on one-hour increments) were developed.

4.1 Modeling Approach

Extending the works of Schindler and Folliard (2002; 2005), Poole (2007) modeled the hydration of concrete, and therefore evolution of heat, for different concrete mix designs while also including supplementary cementitious materials such as blast furnace slag and fly ash. This collection of work follows a common parameter format that defines the degree of hydration curve and formulates these parameters: the ultimate degree of hydration (α_u), the rate of acceleration phase (β), and the start of acceleration phase (τ). Using the governing equations from Schindler, Folliard, and Poole (2002; 2005; 2007) as a heat source, Johnson (2017) developed a modeling method specific to COMSOL Multiphysics® that also incorporates heat diffusion into the soil. This model is a time dependent study that separates the time dependent solver into three segregated steps to properly apply the hydration model. These steps in order are: (1) Equivalent Age (t_e), (2) Degree of Hydration (α), and (3) Temperature (T). Similar to the model parameter formats of Schindler, Folliard, and Poole, mill certificate data for all cementitious materials (Portland cement, slag, and/or fly ash) are required inputs. Mill certificates for the cement, flyash, and slag are provided in the Appendices, Figures C.7, F.3, and C.8, respectively.

Following the general setup of the thermal model outlined in Johnson, 2017, a one-dimensional axisymmetric model using the *Heat Transfer in Solids* module with two separate Coefficient Form PDE modules was created in COMSOL Multiphysics®. This resulted in a two-dimensional geometry where a concrete shaft of diameter *D* is bounded by a concentric soil mass of diameter 4*D*. The thermal properties of the soil mass were those consistent with high diffusivity saturated sand and were used for all models. Specifically, the thermal conductivity was specified as 3 W/(m·K), density as 1700 kg/m³, and heat capacity as 800 J/(kg·K). Both the soil and initial concrete temperatures were specified as 73°F, where the initial concrete temperature is intended to correspond to the batch temperature of a concrete mix. Three concrete mix designs (Table 4.1) were used to create eleven mix proportions with varying total cementitious contents (TCC). Specifically, the total cementitious contents for each mix proportion were, 260 lb/yd³, 360 lb/yd³, 460 lb/yd³, 560 lb/yd³, 760 lb/yd³, 860 lb/yd³, 960 lb/yd³, 1060 lb/yd³, 1160 lb/yd³, and 1260 lb/yd³. Concrete shaft diameters ranged from one to ten feet, on one-foot increments, for each mix proportion. Water-to-cement ratios (by mass) and coarse-to-fine aggregate ratios (by volume) remained constant for each mix when scaling the cementitious contents. This resulted in a total of

330 modeled radial temperature distributions over time (from 1 to 200 hours on one-hour increments).

Table 4.1 Mix designs used to create model mix proportions with varying cementitious contents.

34% Fly As	h (Class F)	60% Slag (field site)		100% (Cement
Material	Amount	Material	Amount	Material	Amount
Cement	$500 \mathrm{lb/yd^3}$	Cement	266.1 lb/yd ³	Cement	$660 \mathrm{lb/yd^3}$
Fly Ash	255 lb/yd^3	Slag	393.9 lb/yd ³	Water	$260 \mathrm{lb/yd^3}$
Water	312 lb/yd^3	Water	260.0 lb/yd^3	Coarse Agg.	1615 lb/yd ³
Coarse Agg.	1650 lb/yd^3	Coarse Agg.	1615.6 lb/yd^3	Fine Agg.	1322 lb/yd^3
Fine Agg.	990 lb/vd^3	Fine Agg.	1322.2 lb/yd^3		

4.2 Model Verification

Model values were verified using the data collected from OC-19 (Figure 4.1, left and top right). The concrete mix design used in this drilled shaft corresponds to that found in Table 4.1 (center). The cage location data was first combined with the corresponding across-shaft data. Two different curves are shown (Figure 4.1, bottom right) corresponding to the two lengths of the crossing bars (E-W in the open round markers and N-S in the filled round markers); a zero radial position corresponds to the intersection of the cross bars and the location of the center bar. Figure 4.1 (bottom right) also shows the highest measured temperatures did not occur at the center bar but rather 8.8 inches off-center in the N-S direction and 5.3 inches in the E-W direction. Two model value sets were overlayed for comparison: across shaft at the true center of the model (bold black curve) and across shaft at a 10-inch offset (bold dashed curve) resolved from the hypotenuse of the 8.8-inch and 5.3-inch N-S and E-W offsets, respectively. The offset model value set is nearly identical to the measured data set. Moreover, the across-shaft data at the true center of the model demonstrates that the true peak temperature is difficult to capture even with a center bar and cross bar installation.

The field data was further superimposed onto the modeled 3-D spatial temperature distribution in Figure 4.2. This shows how the N-S and E-W sensor data did not cross through the center of the shaft where the highest core temperatures occurred. The average cage temperature from the four thermal wires at a depth of 16 feet is also shown as the dashed cage position. The edge of shaft temperature shown as a solid black line was determined from model data and was 10°F less than the average cage temperature.

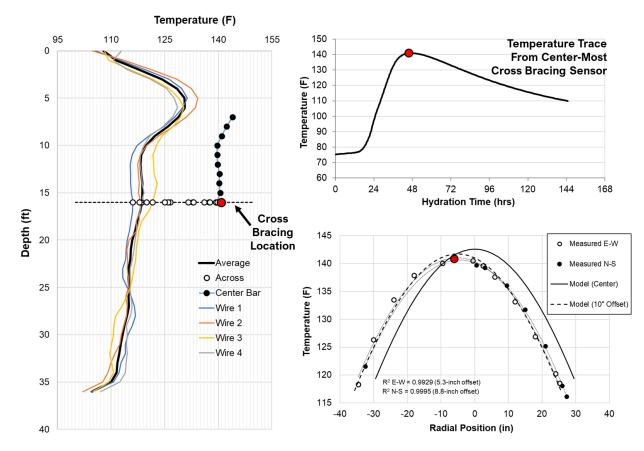


Figure 4.1 Model verification using OC-19 measured data.

[This is a compound figure with three plots: on the left is a plot where the x-axis is temperature and the y-axis is depth in feet with OC-19 temperature data from all four thermal wires located at the cage as well as the center thermal wire; the depth reaches 36 feet and the temperatures range from approximately 110°F to 143°F; the top right is a temperature evolution plot where the x-axis is hydration time in hours and the y-axis is temperature; the time ranges from 0 to 144 hours and the temperature ranges from approximately 75°F to 141°F; the bottom right is a plot presenting the across shaft temperature measurements from drilled shaft OC-19 with model values overlayed for model verification. Two model value sets are included: one from the true center of the model drilled shaft (bold solid curve) and another from a 10-inch offset of the center of the model drilled shaft (bold dashed curve).]

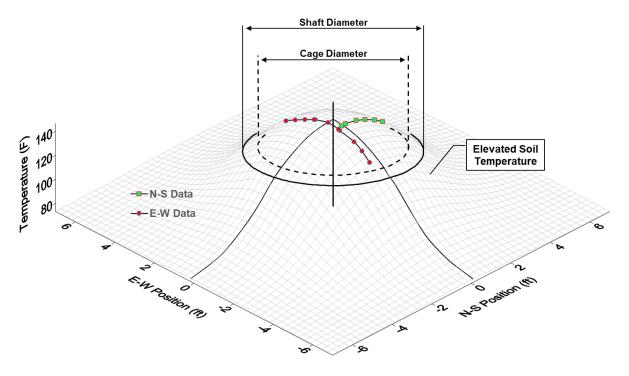


Figure 4.2 Three-dimensional illustration of N-S and E-W across-shaft temperature distributions overlayed on model temperature distribution mesh.

[This is a three-dimensional plot with E-W and N-S radial positions on the x and y axes, respectively, and temperature on the z-axis. Measured across-shaft data has been overlayed on top of the model temperature distribution mesh. Also included is the average cage temperature from the four thermal wires at a depth of 16 feet shown as the dashed cage position and the edge of shaft temperature (determined from model data) shown as a solid black line.]

4.3 Temperature Contour Plots

Using the data generated from the 330 modeled temperature distributions, contour plots were created for both peak and differential temperatures for the three chosen concrete mix proportions (Table 4.1) across the varying cementitious contents and drilled shaft diameters. As expected, peak temperatures were found to occur at the center of each model, and edge-to-core differential temperatures were calculated by subtracting the temperature located at the edge of the shaft model from the center/peak temperature. In addition to edge-to-core differential temperatures, cage-to-core differential temperatures were also calculated. Figures 4.3 to 4.5 show the peak temperature contours, Figures 4.6 to 4.8 edge-to-core differential temperature contours, and Figures 4.9 to 4.11 are the cage-to-core differentials all for fly ash, slag, and pure cement mixes, respectively.

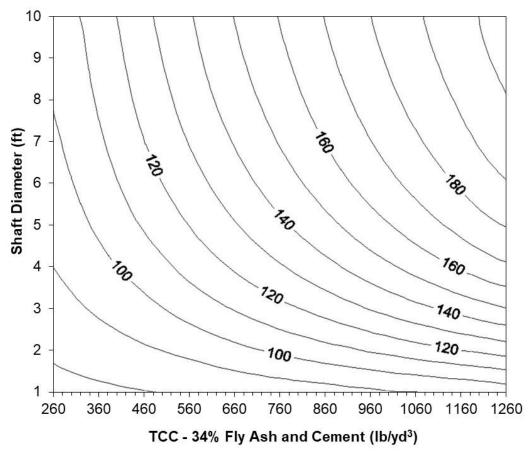


Figure 4.3 Peak temperature (°F) contour plot for 34% fly ash mix.

[This is a contour plot presenting modeled peak temperatures for various cementitious material contents (ranging from 260 to 1260 lb/yd³ on the x-axis) for a 34% fly ash concrete mix and various drilled shaft diameters (ranging from 1 to 10 feet on the y-axis). The lowest contour line is 80°F and the highest contour line is 200°F.]

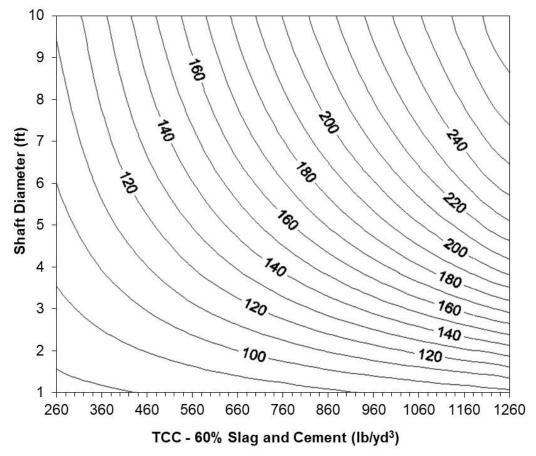


Figure 4.4 Peak temperature (°F) contour plot for 60% slag mix.

[This is a contour plot presenting modeled peak temperatures for various cementitious material contents (ranging from 260 to 1260 lb/yd³ on the x-axis) for a 60% slag concrete mix and various drilled shaft diameters (ranging from 1 to 10 feet on the y-axis). The lower contour line is 80°F and the upper contour line is 270°F.]

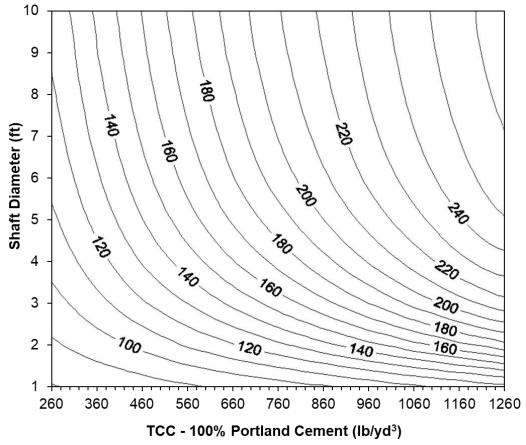


Figure 4.5 Peak temperature (°F) contour plot for 100% Portland cement mix. [This is a contour plot presenting modeled peak temperatures for various cementitious material contents (ranging from 260 to 1260 lb/yd³ on the x-axis) for a 100% Portland cement concrete mix and various drilled shaft diameters (ranging from 1 to 10 feet on the y-axis). The lower contour line is 80°F and the upper contour line is 260°F.]

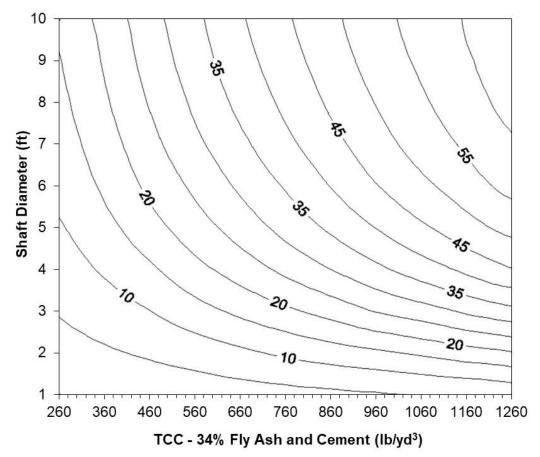


Figure 4.6 Edge-to-core differential temperature (°F) contour plot for 34% fly ash mix. [This is a contour plot presenting modeled differential edge-to-core temperatures for various cementitious material contents (ranging from 260 to 1260 lb/yd³ on the x-axis) for a 34% fly ash concrete mix and various drilled shaft diameters (ranging from 1 to 10 feet on the y-axis). The lower contour line is 5°F and the upper contour line is 60°F.]

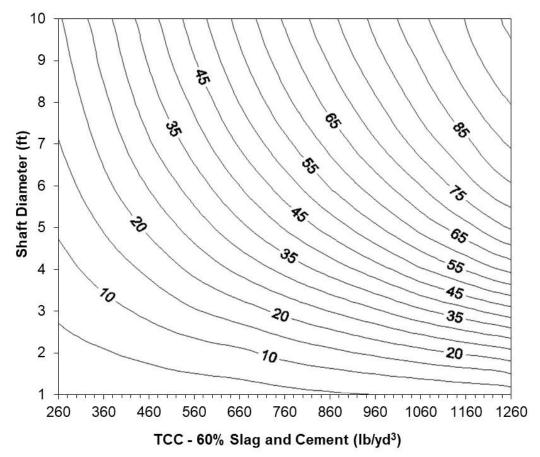


Figure 4.7 Edge-to-core differential temperature (°F) contour plot for 60% slag mix. [This is a contour plot presenting modeled differential edge-to-core temperatures for various cementitious material contents (ranging from 260 to 1260 lb/yd³ on the x-axis) for a 60% slag concrete mix and various drilled shaft diameters (ranging from 1 to 10 feet on the y-axis). The lower contour line is 5°F and the upper contour line is 100°F.]

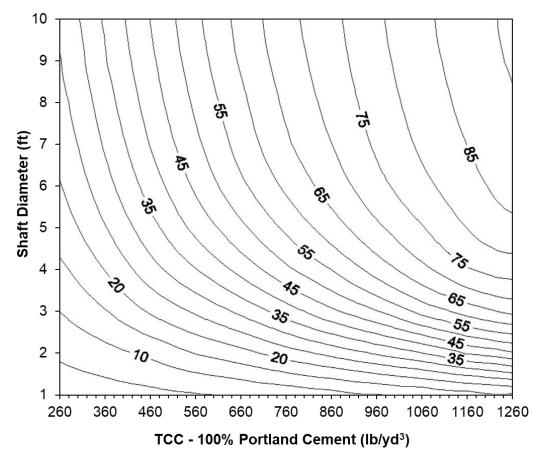


Figure 4.8 Edge-to-core differential temperature (°F) contour plot for 100% Portland cement mix. [This is a contour plot presenting modeled differential edge-to-core temperatures for various cementitious material contents (ranging from 260 to 1260 lb/yd³ on the x-axis) for a 100% Portland cement concrete mix and various drilled shaft diameters (ranging from 1 to 10 feet on the y-axis). The lower contour line is 5°F and the upper contour line is 90°F.]

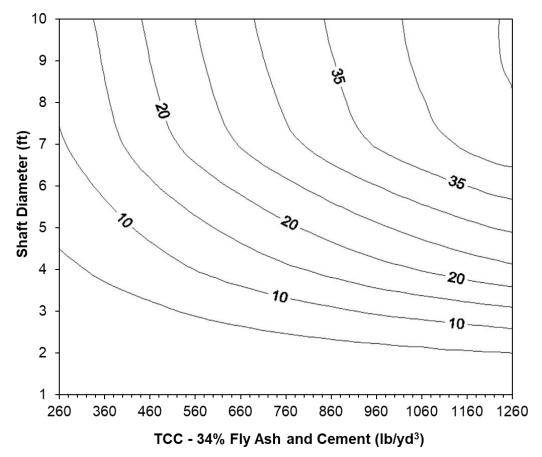


Figure 4.9 Cage-to-core differential temperature (°F) contour plot for 34% fly ash mix. [This is a contour plot presenting modeled differential cage-to-core temperatures for various cementitious material contents (ranging from 260 to 1260 lb/yd³ on the x-axis) for a 34% fly ash concrete mix and various reinforcement cage radii (ranging from 0 to 4.5 feet on the y-axis). The lower contour line is 5°F and the upper contour line is 45°F.]

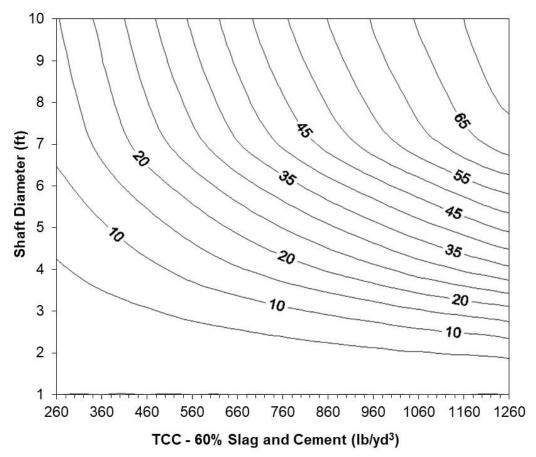


Figure 4.10 Cage-to-core differential temperature (°F) contour plot for 60% slag mix. [This is a contour plot presenting modeled differential cage-to-core temperatures for various cementitious material contents (ranging from 260 to 1260 lb/yd³ on the x-axis) for a 60% slag concrete mix and various reinforcement cage radii (ranging from 0 to 4.5 feet on the y-axis). The lower contour line is 5°F and the upper contour line is 70°F.]

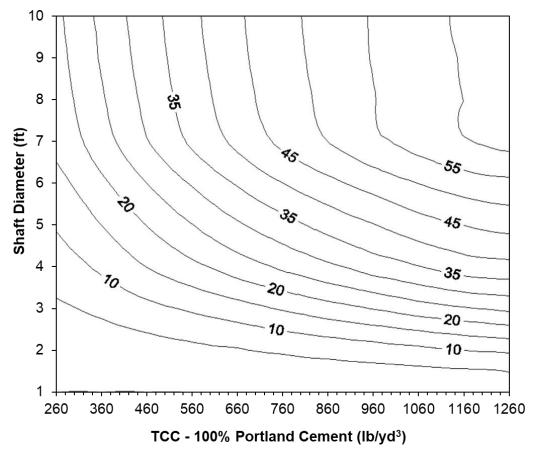


Figure 4.11 Cage-to-core differential temperature (°F) contour plot for 100% Portland cement mix. [This is a contour plot presenting modeled differential cage-to-core temperatures for various cementitious material contents (ranging from 260 to 1260 lb/yd³ on the x-axis) for a 34% fly ash concrete mix and various reinforcement cage radii (ranging from 0 to 4.5 feet on the y-axis). The lower contour line is 5°F and the upper contour line is 60°F.]

4.4 Data Analysis

The following explains the analysis and various prediction methods developed using both the collected field data and modeled temperature distributions presented in Chapter 3 and the preceding sections of Chapter 4.

4.4.1 Model Data Summaries

As noted, a total of 330 modeled radial temperature distributions over time were developed for three unique concrete mix designs, or 110 modeled radial temperature distributions for each mix design. The slag and fly ash mix designs were representative of common shaft mixes presently used in Florida and were based on two typical mixes found to occur most frequently in the database of shafts where temperature measurements and mix design were furnished. The pure Portland cement mix, while not commonly used, was presented for context and for possible later consideration by utility companies that are reluctant to use any replacement cementitious materials in transmission line power pole foundations. Summaries have been tabulated below for each mix design with respect to which conditions result in a failing drilled shaft based on a 160°F peak temperature or 35°F edge-to-core differential temperature (Tables 6.1–6.3).

Table 4.2 Drilled shaft diameter limits for each TCC - 34% fly ash mix.

	.2 Drilled shaft diameter limits for each TCC – 34% fly ash mix.
TCC (pcy)	Diameter Limit (ft)
260	All diameters passed both peak and edge-to-core differential limits.
360	All diameters passed both peak and edge-to-core differential limits.
460	All diameters passed both peak and edge-to-core differential limits.
560	All diameters passed both peak and edge-to-core differential limits.
660	All diameters passed 160°F and 180°F peak temperature limit
660	>7 ft fails edge-to-core differential
760	All diameters passed 180°F peak temperature limit
	>9 ft fails 160°F peak
	>5 ft fails edge-to-core differential
860	All diameters passed 180°F peak temperature limit
	>6 ft fails 160°F peak
	>4 ft fails edge-to-core differential
	>9 ft fails 180°F peak
960	>5 ft fails 160°F peak
	>4 ft fails edge-to-core differential
	>7 ft fails 180°F peak
1060	>4 ft fails 160°F peak
	>3 ft fails edge-to-core differential
	>7 ft fails 180°F peak
1160	>3 ft fails 160°F peak
	>3 ft edge-to-core differential
1260	>4 ft fails 180°F peak
	>3 ft fails 160°F peak
	>3 ft fails edge-to-core differential

Table 4.3 Drilled shaft diameter limits for each TCC – 60% slag mix.

	4.3 Drilled shart diameter limits for each TCC – 60% stag mix.
TCC (pcy)	Diameter Limit (ft)
260	All diameters passed both peak and edge-to-core differential limits.
360	All diameters passed both peak and edge-to-core differential limits.
460	All diameters passed 160°F and 180°F peak temperature limit
	>8 ft fails edge-to-core differential
	All diameters passed 180°F peak temperature limit
560	>9 ft fails 160°F peak
	>6 ft fails edge-to-core differential
	>9 ft fails 180°F peak
660	>6 ft fails 160°F peak
	>5 ft fails edge-to-core differential
	>7 ft fails 180°F peak
760	>5 ft fails 160°F peak
	>4 ft fails edge-to-core differential
	>5 ft fails 180°F peak
860	>4 ft fails 160°F peak
	>3 ft fails edge-to-core differential
	>4 ft fails 180°F peak
960	>3 ft fails 160°F peak
	>3 ft fails edge-to-core differential
	>4 ft fails 180°F peak
1060	>3 ft fails 160°F peak
	>3 ft fails edge-to-core differential
1160	>3 ft fails 180°F peak
	>2 ft fails 160°F peak
	>2 ft fails edge-to-core differential
1260	>3 ft fails 180°F peak
	>2 ft fails 160°F peak
	>2 ft fails edge-to-core differential

Table 4.4 Drilled shaft diameter limits for each TCC – 100% Type IL cement mix.

	Diameter limits for each TCC – 100% Type IL cement mix.
TCC (pcy)	Diameter Limit (ft)
260	All diameters passed both peak and edge-to-core differential limits.
360	All diameters passed 160°F and 180°F peak temperature limit
	>9 ft fails edge-to-core differential
460	All diameters passed 180°F peak temperature limit
	>9 ft fails 160°F peak
	>5 ft fails edge-to-core differential
	All diameters passed 180°F peak temperature limit
560	>5 ft fails 160°F peak
	>4 ft fails edge-to-core differential
	>6 ft fails 180°F peak
660	>4 ft fails 160°F peak
	>3 ft fails edge-to-core differential
	>4 ft fails 180°F peak
760	>3 ft fails 160°F peak
	>2 ft fails edge-to-core differential
	>3 ft fails 180°F peak
860	>2 ft fails 160°F peak
	>2 ft fails edge-to-core differential
	>3 ft fails 180°F peak
960	>2 ft fails 160°F peak
	>2 ft fails edge-to-core differential
	>2 ft fails 180°F peak
1060	>2 ft fails 160°F peak
	>2 ft fails edge-to-core differential
	>2 ft fails 180°F peak
1160	>1 ft fails 160°F peak
	>1 ft edge-to-core differential
1260	>2 ft fails 180°F peak
	>1 ft fails 160°F peak
	>1 ft edge-to-core differential

4.4.2 Predictive Design Equations

Closed-form expressions for the contour plots presented above were also developed to aid the prediction of peak and differential temperature values. Using both non-linear and linear regression techniques, three-dimensional mathematical functions were derived for peak (T) and edge-to-core differential (ΔT) temperature distributions contour plots for each mix design. Plots were created for both edge-to-core differential temperature and peak temperature versus shaft radius for each mix design (Figures 4.12 through 4.17). Temperatures were grouped by total cementitious content. A non-linear regression (2^{nd}) order polynomial was performed on the temperature versus shaft radius data for each cementitious content group. The non-linear regression coefficients were then plotted versus cementitious content (Figures 4.18 through 4.23), on which a second regression was

performed. This is a convenient way to develop three dimensional equations (one dependent variable, T; two independent variables, shaft radius, R, and total cementitious content, TCC). For the slag and fly ash mix models, a linear regression was performed at this step; for the 100% Portland cement mix model, a non-linear regression (2^{nd} order polynomial) was necessary. For the a_3 , b_3 , and c_3 coefficient regressions, the intercept was set to the concrete placement temperature used in the model, $73^{\circ}F$. This allows for concrete placement temperature to also be considered in the development of these closed-form expressions.

This analysis resulted in a total of six predictive equations (Equations 1–6 below), each dependent on total cementitious content (TCC), the concrete temperature when batched (T_{conc} , can be taken as average air temperature on the day of concrete batching), and shaft radius (R).

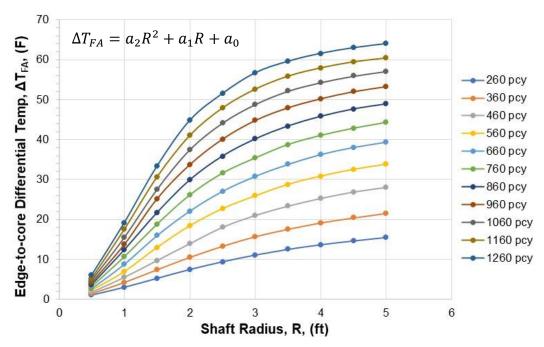


Figure 4.12 Model edge-to-core differential temperature (°F) versus shaft radius for 34% fly ash mix.

[Figure 4.12 Detailed Description: This is a plot presenting modeled edge-to-core differential temperatures on the y-axis and various reinforcement cage radii (ranging from 0 to 5 feet on the x-axis) for various cementitious material contents (ranging from 260 to 1260 lb/yd³) for a 34% fly ash concrete mix. Each cementitious content is an individual data series, therefore this plot displays 11 individual curves.]

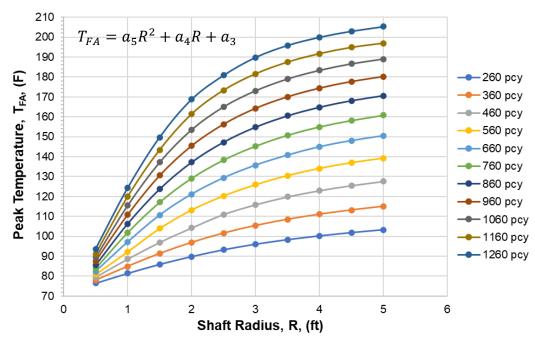


Figure 4.13 Model peak temperature (°F) versus shaft radius for 34% fly ash mix. [This is a plot presenting modeled peak temperatures on the y-axis and various reinforcement cage radii (ranging from 0 to 5 feet on the x-axis) for various cementitious material contents (ranging from 260 to 1260 lb/yd³) for a 34% fly ash concrete mix. Each cementitious content is an individual data series, therefore this plot displays 11 individual curves.]

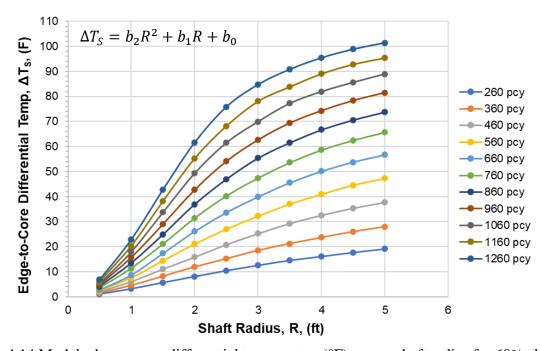


Figure 4.14 Model edge-to-core differential temperature (°F) versus shaft radius for 60% slag mix.

[Figure 4.14 Detailed Description: This is a plot presenting modeled edge-to-core differential temperatures on the y-axis and various reinforcement cage radii (ranging from 0 to 5 feet on the x-axis) for various cementitious material contents (ranging from 260 to 1260 lb/yd³) for a 60% slag concrete mix. Each cementitious content is an individual data series, therefore this plot displays 11 individual curves.]

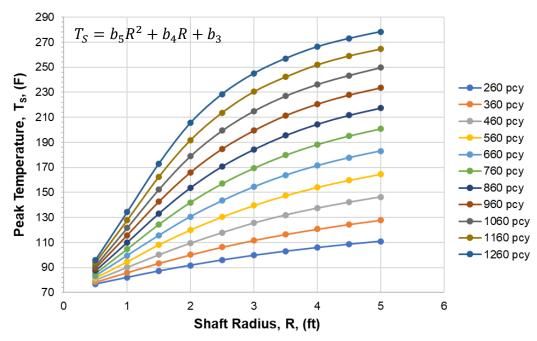


Figure 4.15 Model peak temperature (°F) versus shaft radius for 60% slag mix. [Figure 4.15 Detailed Description: This is a plot presenting modeled peak temperatures on the y-axis and various reinforcement cage radii (ranging from 0 to 5 feet on the x-axis) for various cementitious material contents (ranging from 260 to 1260 lb/yd³) for a 60% slag concrete mix. Each cementitious content is an individual data series, therefore this plot displays 11 individual curves.]

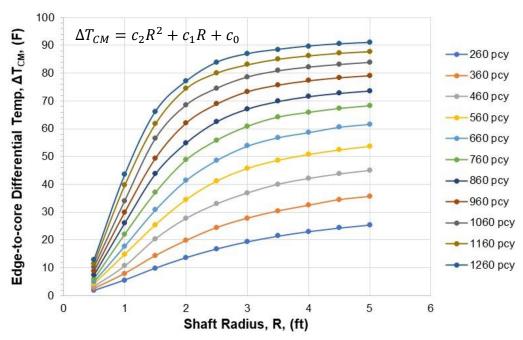


Figure 4.16 Model edge-to-core differential temperature (°F) versus shaft radius for 100% Type IL cement mix.

[This is a plot presenting modeled edge-to-core differential temperatures on the y-axis and various reinforcement cage radii (ranging from 0 to 5 feet on the x-axis) for various cementitious material contents (ranging from 260 to 1260 lb/yd³) for a 100% Type IL cement concrete mix. Each cementitious content is an individual data series, therefore this plot displays 11 individual curves.]

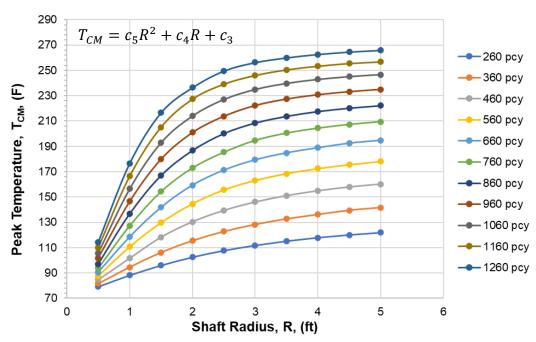


Figure 4.17 Model peak temperature (°F) versus shaft radius for 100% Type IL cement mix.

[Figure 4.17 Detailed Description: This is a plot presenting modeled peak temperatures on the y-axis and various reinforcement cage radii (ranging from 0 to 5 feet on the x-axis) for various cementitious material contents (ranging from 260 to 1260 lb/yd³) for a 100% Type IL cement concrete mix. Each cementitious content is an individual data series, therefore this plot displays 11 individual curves.]

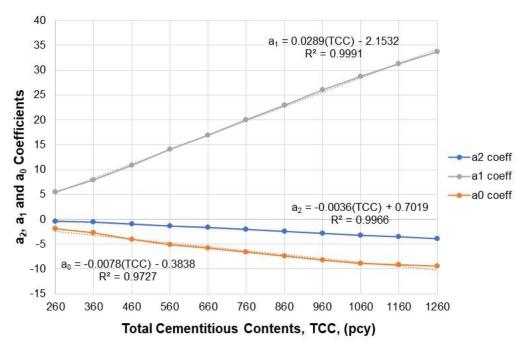


Figure 4.18 a_2 , a_1 , and a_0 regression coefficients versus cementitious contents for 34% fly ash mix. [This is a plot presenting regression coefficients for a_2 , a_1 , and a_0 on the y-axis and for various cementitious material contents (ranging from 260 to 1260 lb/yd³ on the x-axis) for a 34% fly ash concrete mix. Each regression parameter is an individual data series, therefore this plot displays 3 individual curves with linear trendlines applied to each data series. Trendline equations and R^2 values are also included in the plot. The trendline equation for the a_0 data series is a_0 =-0.0078(TCC)-0.3838 with an R^2 =0.9727. The trendline equation for the a_1 data series is a_1 =0.0289(TCC)-2.1532 with an R^2 =0.9991. The trendline equation for the a_2 data series is a_2 =-0.0036(TCC)+0.7019 with an R^2 =0.9966.]

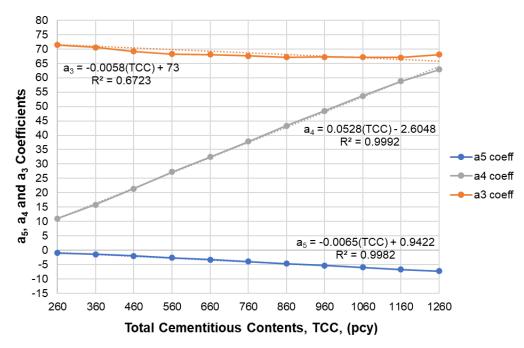


Figure 4.19 a₅, a₄, and a₃ regression coefficients versus cementitious contents for 34% fly ash mix. [This is a plot presenting regression coefficients for a₅, a₄, and a₃ on the y-axis and for various cementitious material contents (ranging from 260 to 1260 lb/yd³ on the x-axis) for a 34% fly ash concrete mix. Each regression parameter is an individual data series, therefore this plot displays 3 individual curves with linear trendlines applied to each data series. Trendline equations and R^2 values are also included in the plot. The trendline equation for the a₃ data series is a₃=-0.0058(TCC)+73 with an R^2 =0.6723. The trendline equation for the a₄ data series is a₄=-0.0528(TCC)-2.6048 with an R^2 =0.9992. The trendline equation for the a₅ data series is a₅=-0.0065(TCC)+0.9422 with an R^2 =0.9982.]

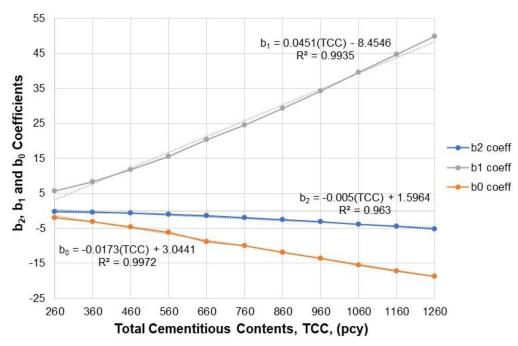


Figure 4.20 b₂, b₁, and b₀ regression coefficients versus cementitious contents for 60% slag mix. [This is a plot presenting regression coefficients for b₂, b₁, and b₀ on the y-axis and for various cementitious material contents (ranging from 260 to 1260 lb/yd³ on the x-axis) for a 60% slag concrete mix. Each regression parameter is an individual data series, therefore this plot displays 3 individual curves with linear trendlines applied to each data series. Trendline equations and R^2 values are also included in the plot. The trendline equation for the b₀ data series is b_0 =-0.0173(TCC)+3.0441 with an R^2 =0.9972. The trendline equation for the b₁ data series is b_1 =0.0451(TCC)-8.4546 with an R^2 =0.9935. The trendline equation for the b₂ data series is b_2 =-0.005(TCC)+1.5964 with an R^2 =0.963.]

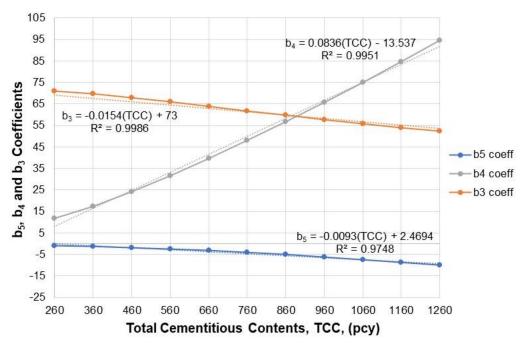


Figure 4.21 b₅, b₄, and b₃ regression coefficients versus cementitious contents for 60% slag mix. [This is a plot presenting regression coefficients for b₅, b₄, and b₃ on the y-axis and for various cementitious material contents (ranging from 260 to 1260 lb/yd³ on the x-axis) for a 60% slag concrete mix. Each regression parameter is an individual data series, therefore this plot displays 3 individual curves with linear trendlines applied to each data series. Trendline equations and R^2 values are also included in the plot. The trendline equation for the b₃ data series is b_3 =-0.0154(TCC)+73 with an R^2 =0.9986. The trendline equation for the b₄ data series is b_4 =0.0836(TCC)-13.537 with an R^2 =0.9951. The trendline equation for the b₅ data series is b_5 =-0.0093(TCC)+2.4694 with an R^2 =0.9748.]

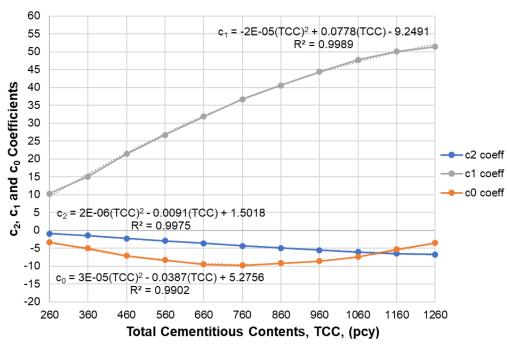


Figure 4.22 c₂, c₁, and c₀ regression coefficients versus cementitious contents for 100% Type IL cement mix.

[This is a plot presenting regression coefficients for c_2 , c_1 , and c_0 on the y-axis and for various cementitious material contents (ranging from 260 to 1260 lb/yd³ on the x-axis) for a 100% Type IL cement concrete mix. Each regression parameter is an individual data series, therefore this plot displays 3 individual curves with linear trendlines applied to each data series. Trendline equations and R^2 values are also included in the plot. The trendline equation for the c_0 data series is c_0 =-0.00003(TCC)-0.0387(TCC)+5.2756 with an R^2 =0.9902. The trendline equation for the c_1 data series is c_1 =-0.00002(TCC)+0.0778(TCC)-9.2491 with an R^2 =0.9989. The trendline equation for the c_2 data series is c_2 =0.000002(TCC)-0.0091(TCC)+1.5018 with an R^2 =0.9975.]

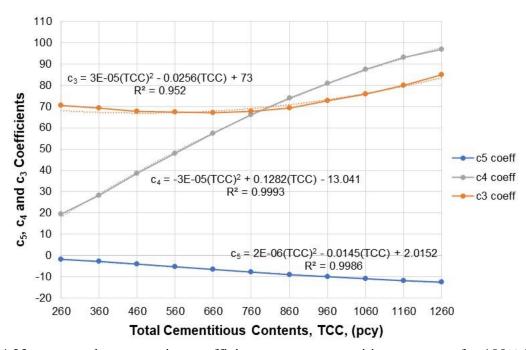


Figure 4.23 c₅, c₄, and c₃ regression coefficients versus cementitious contents for 100% Type IL cement mix.

[This is a plot presenting regression coefficients for c_5 , c_4 , and c_3 on the y-axis and for various cementitious material contents (ranging from 260 to 1260 lb/yd³ on the x-axis) for a 100% Type IL cement concrete mix. Each regression parameter is an individual data series, therefore this plot displays 3 individual curves with linear trendlines applied to each data series. Trendline equations and R^2 values are also included in the plot. The trendline equation for the c_3 data series is c_3 =-0.00003(TCC)-0.0256(TCC)+73 with an R^2 =0.952. The trendline equation for the c_4 data series is c_4 =-0.00002(TCC)+0.1282(TCC)-13.041 with an R^2 =0.9993. The trendline equation for the c_5 data series is c_5 =0.000002(TCC)-0.0145(TCC)+2.0152 with an R^2 =0.9986.]

$$\Delta T_{FA} = a_2 R^2 + a_1 R + a_0 \tag{1}$$

where

$$a_0 = -0.0078(TCC) - 0.3838 (1.a)$$

$$a_1 = 0.02892(TCC) - 2.1532$$
 (1.b)

$$a_2 = -0.0036(TCC) + 0.70185 (1.c)$$

$$T_{FA} = a_5 R^2 + a_4 R + a_3 (2)$$

where

$$a_3 = -0.0058(TCC) + T_{conc}$$
 (2.a)

$$a_4 = 0.05283(TCC) - 2.6048$$
 (2.b)

$$a_5 = -0.0065(TCC) + 0.94216 \tag{2.c}$$

$$\Delta T_{\rm S} = b_2 R^2 + b_1 R + b_0 \tag{3}$$

where

$$b_0 = -0.0173(TCC) + 3.04413 (3.a)$$

$$b_1 = 0.04509(TCC) - 8.4546 \tag{3.b}$$

$$b_2 = -0.005(TCC) + 1.5964 (3.c)$$

$$T_{\rm S} = b_{\rm 5}R^2 + b_{\rm 4}R + b_{\rm 3} \tag{4}$$

where

$$b_3 = -0.0154(TCC) + T_{conc} (4.a)$$

$$b_4 = 0.08356(TCC) - 13.537 \tag{4.b}$$

$$b_5 = -0.0093(TCC) + 2.46944 \tag{4.c}$$

$$\Delta T_{CM} = c_2 R^2 + c_1 R + c_0 \tag{5}$$

where

$$c_0 = 0.0000253(TCC)^2 - 0.03869(TCC) + 5.275553$$
 (5.a)

$$c_1 = -0.0000232(TCC)^2 + 0.07782(TCC) - 9.24907$$
(5.b)

$$c_2 = 0.0000019(TCC)^2 - 0.0091(TCC) + 1.501816$$
 (5.c)

$$T_{CM} = c_5 R^2 + c_4 R + c_3 (6)$$

where

$$c_3 = 0.00003(TCC)^2 - 0.0256(TCC) + T_{conc}$$
(6.a)

$$c_4 = -0.000032(TCC)^2 + 0.128232(TCC) - 13.0412$$
(6.b)

$$c_5 = 0.0000022(TCC)^2 - 0.01453(TCC) + 2.015242$$
 (6.c)

4.4.3 Quality Assurance Estimation Equations: Model Cage-to-Core Method

The cage-to-core differential temperatures resulting from the modeling were also used to derive closed-form expressions that can be used to predict cage-to-core differential temperature with the following information: reinforcement cage radius, total cementitious content, and type of supplementary cementitious material (fly ash or slag), if applicable. The calculated cage-to-core differential temperature can then be added to the average measured temperature at the reinforcement cage (such as those collected for thermal integrity profiling) to predict the core temperature from field measurements taken at the time of peak cage temperature. When/if applied to other times of testing, the predicted core temperature at that time will be higher than actual but would still underpredict the peak core temperature at the worst-case time.

Similar to the predictive design equations in Section 4.4.2, cage-to-core differential temperatures were grouped by total cementitious content and plotted versus reinforcement cage radius (Figures 4.24, 4.25, and 4.26). A non-linear regression (2nd order polynomial) was subsequently performed on the data for each cementitious content group. The non-linear regression coefficients were then plotted versus total cementitious content (Figure 4.27, 4.28, and 4.29), on which another regression was performed. For the slag mix and fly ash mix models, a linear regression was performed at this step, and for the 100% Portland cement mix model, a non-linear regression (2nd order polynomial) was performed.

This analysis, once again, resulted in a total of three predictive equations (Equations 7–9 below), each dependent on total cementitious content (TCC) and reinforcement cage radius (R_{cage}).

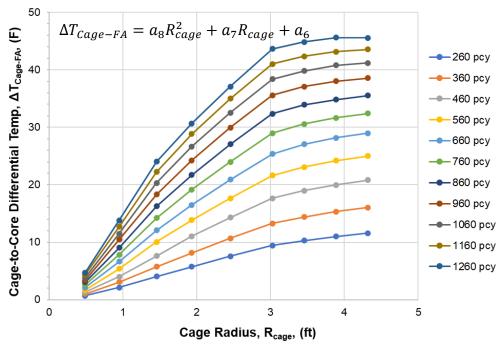


Figure 4.24 Model cage-to-core differential temperature (°F) versus reinforcement cage radius for 34% fly ash mix.

[This is a plot presenting modeled cage-to-core differential temperatures on the y-axis and various reinforcement cage radii (ranging from 0 to 4.5 feet on the x-axis) for various cementitious material contents (ranging from 260 to 1260 lb/yd^3) for a 34% fly ash concrete mix. Each cementitious content is an individual data series, therefore this plot displays 11 individual curves.]

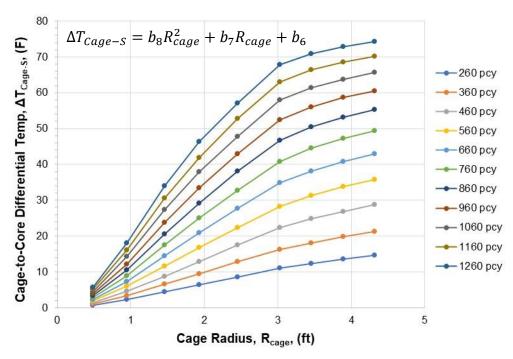


Figure 4.25 Model cage-to-core differential temperature ($^{\circ}$ F) versus reinforcement cage radius for 60% slag mix.

[This is a plot presenting modeled cage-to-core differential temperatures on the y-axis and various reinforcement cage radii (ranging from 0 to 4.5 feet on the x-axis) for various cementitious material contents (ranging from 260 to 1260 lb/yd³) for a 60% slag concrete mix. Each cementitious content is an individual data series, therefore this plot displays 11 individual curves.]

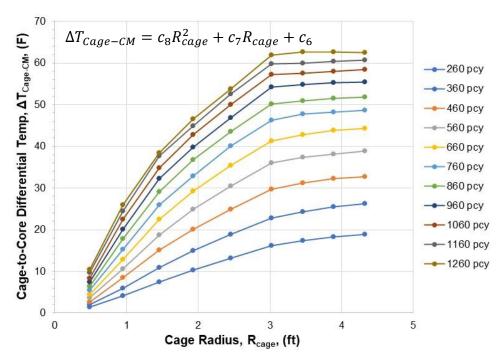


Figure 4.26 Model cage-to-core differential temperature (°F) versus reinforcement cage radius for 100% Type IL cement mix.

[This is a plot presenting modeled cage-to-core differential temperatures on the y-axis and various reinforcement cage radii (ranging from 0 to 4.5 feet on the x-axis) for various cementitious material contents (ranging from 260 to 1260 lb/yd³) for a 100% Type IL cement concrete mix. Each cementitious content is an individual data series, therefore this plot displays 11 individual curves.]

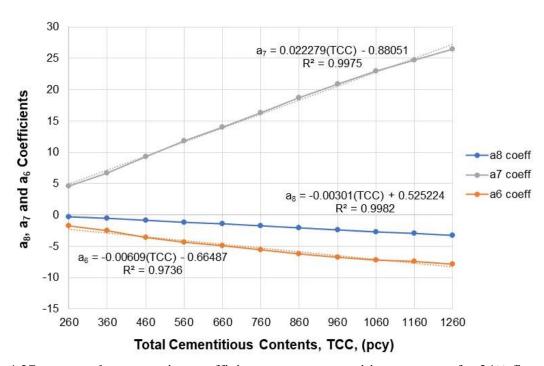


Figure 4.27 a₈, a₇, and a₆ regression coefficients versus cementitious contents for 34% fly ash mix. [This is a plot presenting regression coefficients for a₈, a₇, and a₆ on the y-axis and for various cementitious material contents (ranging from 260 to 1260 lb/yd³ on the x-axis) for a 34% fly ash concrete mix. Each regression parameter is an individual data series, therefore this plot displays 3 individual curves with linear trendlines applied to each data series. Trendline equations and R^2 values are also included in the plot. The trendline equation for the a₆ data series is a₆=-0.00609(TCC)-0.66487 with an R^2 =0.9736. The trendline equation for the a₈ data series is a₇=0.022279(TCC)-0.88051 with an R^2 =0.9975. The trendline equation for the a₈ data series is a₈=-0.00301(TCC)+0.525224 with an R^2 =0.9982.]

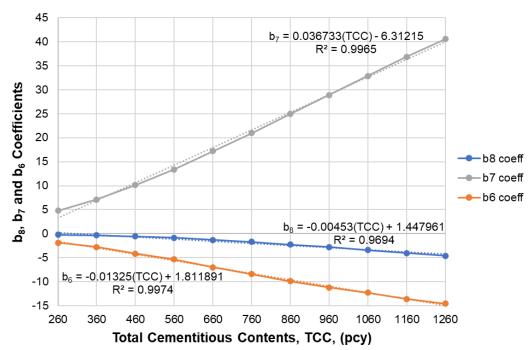


Figure 4.28 b₈, b₇, and b₆ regression coefficients versus cementitious contents for 60% slag mix. [This is a plot presenting regression coefficients for b₈, b₇, and b₆ on the y-axis and for various cementitious material contents (ranging from 260 to 1260 lb/yd³ on the x-axis) for a 60% slag concrete mix. Each regression parameter is an individual data series, therefore this plot displays 3 individual curves with linear trendlines applied to each data series. Trendline equations and R^2 values are also included in the plot. The trendline equation for the b₆ data series is b_6 =-0.01325(TCC)+1.811891 with an R^2 =0.9974. The trendline equation for the b₇ data series is b_7 =0.036733(TCC)-6.31215 with an R^2 =0.9965. The trendline equation for the b₈ data series is b_8 =-0.00453(TCC)+1.447961 with an R^2 =0.9694.1

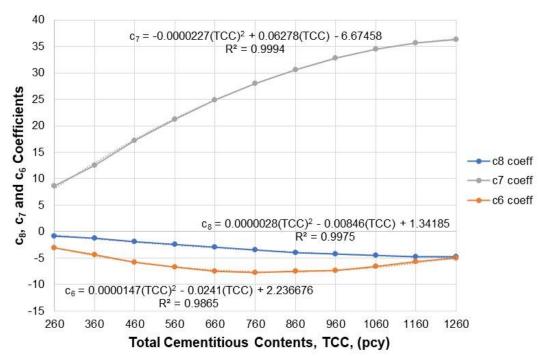


Figure 4.29 c₈, c₇, and c₆ regression coefficients versus cementitious contents for 100% Type IL cement mix.

[This is a plot presenting regression coefficients for c_8 , c_7 , and c_6 on the y-axis and for various cementitious material contents (ranging from 260 to 1260 lb/yd³ on the x-axis) for a 100% Type IL cement concrete mix. Each regression parameter is an individual data series, therefore this plot displays 3 individual curves with linear trendlines applied to each data series. Trendline equations and R^2 values are also included in the plot. The trendline equation for the c_6 data series is c_6 =0.0000147(TCC)-0.0241(TCC)+2.236676 with an R^2 =0.9865. The trendline equation for the c_7 data series is c_7 =-0.0000227(TCC)+0.06278(TCC)-6.67458 with an R^2 =0.9994. The trendline equation for the c_8 data series is c_8 =0.0000028(TCC)-0.00846(TCC)+1.34185 with an R^2 =0.9975.]

$$\Delta T_{cage-FA} = a_8 R_{cage}^2 + a_7 R_{cage} + a_6 \tag{7}$$

where

$$a_6 = -0.00609(TCC) - 0.66487 \tag{7.a}$$

$$a_7 = 0.022279(TCC) - 0.88051$$
 (7.b)

$$a_8 = -0.00301(TCC) + 0.525224$$
 (7.c)

$$\Delta T_{cage-S} = b_8 R_{cage}^2 + b_7 R_{cage} + b_6 \tag{8}$$

where

$$b_6 = -0.01325(TCC) + 1.811891 \tag{8.a}$$

$$b_7 = 0.036733(TCC) - 6.31215 \tag{8.b}$$

$$b_8 = -0.00453(TCC) + 1.447961 \tag{8.c}$$

$$\Delta T_{Cage-CM} = c_8 R_{cage}^2 + c_7 R_{cage} + c_6 \tag{9}$$

where

$$c_6 = 0.0000147(TCC)^2 - 0.0241(TCC) + 2.236676$$
 (9.a)
 $c_7 = -0.0000227(TCC)^2 + 0.06278(TCC) - 6.67458$ (9.b)

$$c_7 = -0.0000227(TCC)^2 + 0.06278(TCC) - 6.67458$$
(9.b)

$$c_8 = 0.0000028(TCC)^2 - 0.00846(TCC) + 1.34185$$
 (9.c)

Quality Assurance Estimation Equations: Field Gradient Method

Both the modeled temperature distributions and collected thermal integrity temperature data show the across-shaft temperature distribution forms a bell shape. The inflection point along the edges of the bell occurs at the concrete/soil interface or slightly inside the concrete. Between the reinforcement cage, a parabolic shape exists. Figures 4.30 and 4.31 below illustrate these shapes for both the modeled temperature distributions and the collected thermal integrity temperature data from shaft OC-19, respectively. In Figure 4.31, note the strong parabolic fit quality (R²=0.9999 and 0.9961) for the two across-shaft temperature distributions, each perpendicular to each other. It then stands to reason that a generic set of equations for the temperature distribution can be determined with the following considerations: the general equation for any parabola is

$$T(x) = ax^2 + bx + c \tag{10}$$

When the parabola is centered and x = 0 is at the core (and the hottest portion of a shaft), the equation can be reduced to Equation 10.a from the derivative of Equation 10. It is known that the slope at the top of the parabola will be flat and thus equal to zero. This is shown in Equation 10.b below.

$$T(x) = ax^2 + c (10.a)$$

$$T'(0) = 0 = 2a(0) + b$$
, therefore $b = 0$ (10.b)

Evaluation of the "a" coefficient can be similarly performed using the derivative of Equation 10.a knowing the slope of the parabola at the cage positions $x = -R_{cage}$ and $x = R_{cage}$, where R_{cage} is the radius of the reinforcement cage (temperature measurement location). This slope can be taken as a $^{\circ}$ F/in gradient (∇). With these known variables, evaluation of the "a" coefficient becomes

$$T'(-R_{cage}) = \nabla = 2a(-R_{cage})$$
 (10.c)

$$a = -\frac{\nabla}{2R_{cage}} \tag{10.d}$$

The temperature gradient is specific to the concrete mix, time of testing, and depth location; R_{cage} is unique to the given shaft cage configuration. This leaves the core shaft temperature from Equation 10.a equal to coefficient "c" (Equation 10.f). Core temperature can then be solved for each depth location in the drilled shaft to find the worst-case internal temperature value.

$$T(R_{cage}) = T_{cage\ avg} = -\frac{\nabla}{2R_{cage}}R_{cage}^2 + c \tag{10.e}$$

$$c = core \ temp = \frac{\nabla}{2} R_{cage} + T_{cage \ avg}$$
 (10.f)

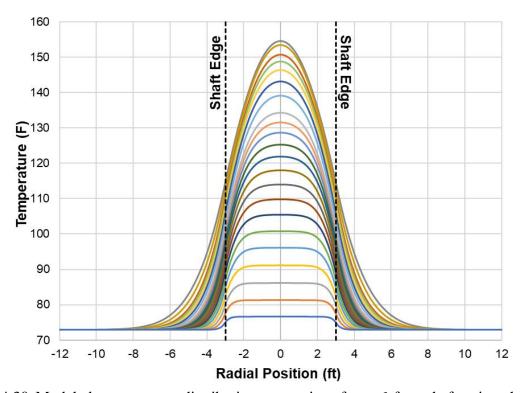


Figure 4.30 Modeled temperature distributions over time for a 6-foot shaft using the OC-19 concrete mix design.

[This is a plot where the x-axis is radial position in feet and the y-axis is temperature. The data presented is modeled across-shaft temperature distributions over time. Each across-shaft temperature distribution is generally parabolic in shape and as time increases, so does the height of each parabola.]

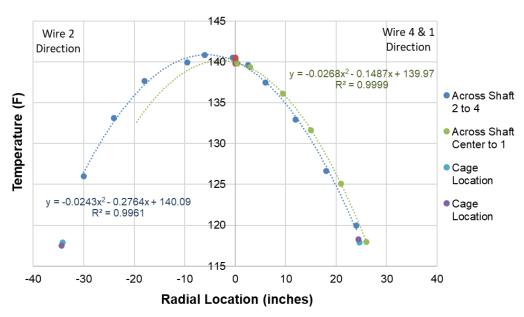


Figure 4.31 Plot presenting OC-19 data taken from the center wire sensors installed in an across-shaft configuration.

[This is a plot presenting temperature data on the y-axis versus radial location on the x-axis where the center of the shaft is located at a zero radius and the cage is at plus or minus radial locations in inches relative to center. There is a full temperature distribution for the portion across shaft between cage wires 2 and 4, and there is a half temperature distribution for the portion across shaft between the center and cage wire 1. The temperature differential between the cage locations and the peak is approximately 23°F. The plot also includes parabolic equations for each distribution series and R values for each fit. These R values are 0.9961 and 0.9999, respectively.]

While the slope of the parabolic temperature distribution of a drilled shaft is known as a temperature gradient, determining a value for the temperature gradient is a different matter. With full across-shaft temperature distributions (e.g. data collected from OC-19 and the Sinclair Hills drilled shaft), this gradient would be determined by calculating the change in temperature between two thermal sensors within the linear portion of the parabolic distribution and dividing by the distance between those sensors or by solving for the derivative of the bell curve function at $x=R_{\text{cage}}$.

The instrumentation of Bartow shaft 1-4 explored determining this gradient with both thermal wire offset sensors and readings of the individual infrared probe sensors. The wire instrumentation of Bartow shaft 1-4 included thermal wires down the length of the reinforcement cage rebar with a known offset using plastic spacers. This provided for thermal sensors to be aligned longitudinally but offset concentrically. Gradient calculations from these measurements were presented in Chapter 3 (Figure 3.62).

The thermal integrity probe method was also performed on Bartow shaft 1-4 (Figure 4.32). Access tubes consisted of both steel and PVC tubes. Specifically, tube numbers 1, 2, 4, 5, and 7

were steel and tube numbers 3 and 6 were PVC. Annotations specifying these tube numbers have been added to Figure 3.58 and presented below as Figure 4.33. The probe used (Figure 4.34) included four laterally directed infrared thermal sensors and measured the access tube wall temperature in four orthogonal directions. Probe sensors are numbered such that sensors 1 and 3 and sensors 2 and 4 are directed in opposite directions on the probe (180 deg apart). This specific probe also included a six-axis motion tracking device that combines a three-axis gyroscope, three-axis accelerometer, and digital motion processor (InvenSense, 2013), providing for the additional measurement of probe rotation angle. Several probe runs were performed where the probe was lowered, then paused at various depths to rotate within the access tube.

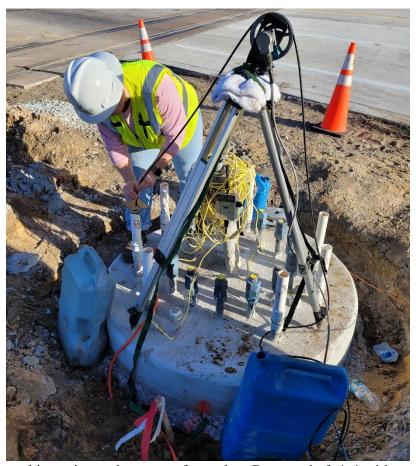


Figure 4.32 Thermal integrity probe test performed on Bartow shaft 1-4 with gyroscopic sensor. [This is a photograph of a graduate student taking probe temperature measurements using a thermal probe equipped with a gyroscopic sensor. The graduate student is seen rotating the probe within the access tube.]



Figure 4.33 Fully instrumented Bartow shaft 1-4 reinforcement cage with annotated access tube numbers.

[This is a photo taken from outside the top of the Bartow shaft reinforcement cage. All cage thermal wires and center thermal wire have been installed, and all above-concrete sensors and wire connector ends have been bundled and secured in heavy-duty plastic bags and Gorilla tape. Steel and PVC access tubes have been labeled with numbers 1 through 7 that are referenced within this report.]

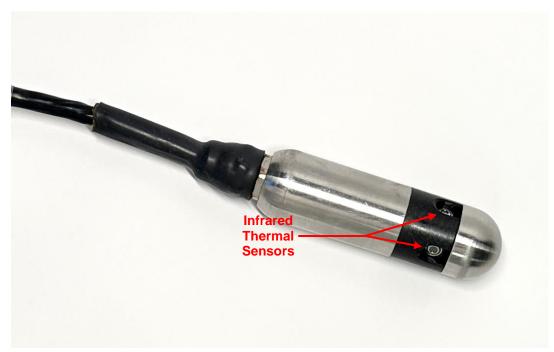


Figure 4.34 Gyro probe (showing 2 of 4 orthogonal infrared thermal sensors) used to test Bartow shaft 1-4.

[This is a detail photograph of the Thermal Integrity Profiling probe showing two of four infrared thermal sensors. Each infrared thermal sensor is positioned 90 degrees apart radially around the probe.]

Figure 4.35 below presents sample temperature data plotted against the recorded probe rotation measurement from one of these trials, specifically data collected two days after concreting from PVC access tube number 3 at a depth of approximately 12 feet. This plot clearly shows a variation in temperature as the sensor direction was rotated within the access tube. As sensor 1 measured its lowest temperature, sensor 3 was measuring its highest temperature. Similarly, as sensor 2 measured its lowest temperature, sensor 4 was measuring its highest temperature and vice versa. These internal tube temperature measurements were then plotted against the radial position within the access tube (Figure 4.36). When presented in this context, the linear relationship between the tube wall temperatures and radial shaft position within the access tube can be seen.

Figure 4.37 compares the temperature gradient calculations from the thermal wire measurements presented in Chapter 3 to the opposing probe sensor readings measuring the inside of the access tube converted to gradient assuming a 2-inch tube outer diameter. The data from Figures 4.35 and 4.36 were collected by deliberately stopping the probe and spinning the wire from the top of shaft; the data in Figure 4.37, however, shows a periodic high to low temperature trend which is the byproduct of twisted conductors within the lead wire. Hence, all probes naturally spin under normal operation in response the subtle external protrusion of the conductors through the environmental protective extruded casing. The true temperature gradient at a given depth may or may not be captured from one of the two opposing sensor sets. So, the highest values recorded

represent when a set of sensors are focused directly inward and outward. This comparison shows a strong match between the two data collection methods.

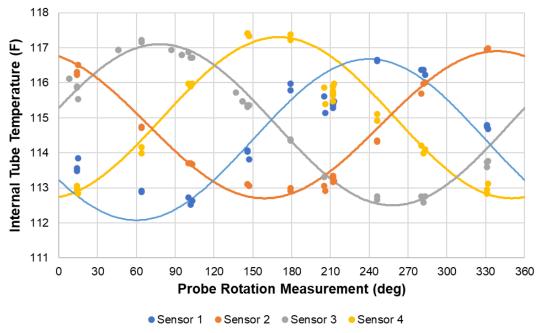


Figure 4.35 Plot presenting thermal probe spin test data: internal tube temperature versus probe rotation measurement for access tube #3 collected two days post concreting. [This is a plot where the x-axis is probe rotation measurement in degrees and the y-axis is internal

[This is a plot where the x-axis is probe rotation measurement in degrees and the y-axis is internal tube temperature. The data presented are temperature measurements taken from one of several probe runs performed where the probe was lowered, then paused at various depths to rotate within the access tube.]

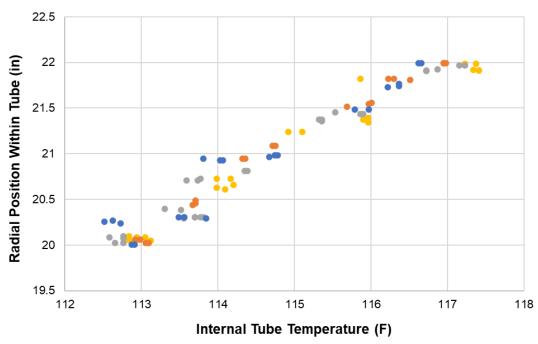


Figure 4.36 Plot presenting thermal probe spin test data: internal tube temperature versus radial position within the access tube.

[This is a plot where the x-axis is internal tube temperature and the y-axis is radial position within the access tube in inches. The data presented are the same temperature measurements from Figure 4.35 showing the linear relationship between temperature and radial position within an access tube.]

Figure 4.37 Temperature gradient comparison between thermal wire method and probe method. [This is a plot where the x-axis is temperature gradient in °F/in and the y-axis is depth. The data presented are a comparison between the temperature gradients presented in Chapter 3, Section 3.6.2 and temperature gradients calculated from probe measurements.]

Lastly, measured probe data collected from all access tubes was plotted versus depth and used to estimate core temperature versus depth by solving for constant c, the peak temperature, when the slope of the equation is known in Equation 10.f from probe gradient values (derivative of a parabolic function evaluated at the cage radius). Using the calculated temperature gradient, edge to core differential temperature was also estimated by extrapolating the bell curve slope to the shaft edge and subtracting that temperature from the estimated core temperature. Figure 4.38 presents these data and calculations and, at first glance, appears to be an acceptable drilled shaft with peak temperatures below 158°F, however differential temperatures exceed the 35°F threshold between the depths of 6 and 13 feet.

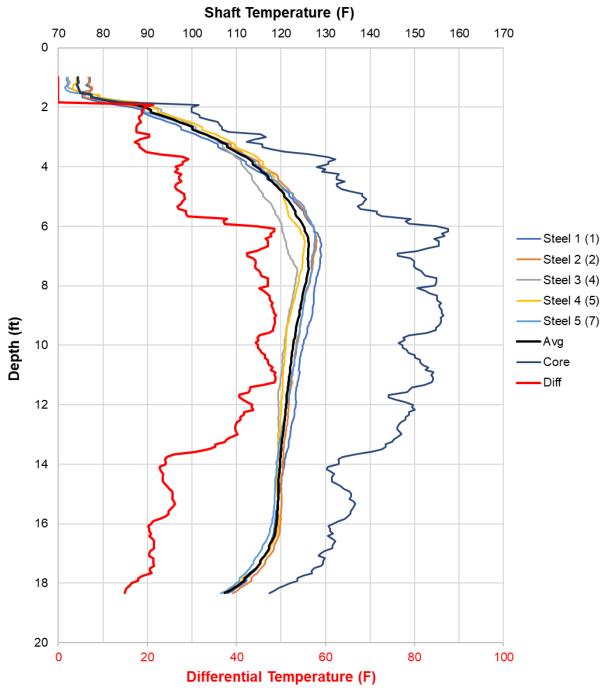


Figure 4.38 Plot presenting probe data collected from each steel access tube with corresponding calculated core and differential temperatures versus depth.

[This is a plot where there are dual x-axes, the top being drilled shaft temperature and the bottom being differential temperature, and the y-axis is depth in feet. The data presented include probe temperature measurements taken from all steel access tubes from the Bartow drilled shaft as well as calculated core and differential temperatures versus depth. The peak differential temperature occurs at approximately 11 feet and reads approximately 48°F. The peak core temperature occurs at approximately 6 feet and reads approximately 157°F.]

Chapter Five: Summary and Conclusions

With the objective of providing clarification as to what conditions constitute a drilled shaft as a mass concrete element, a study incorporating both specialized field temperature measurements and comprehensive numerical modeling was presented.

5.1 Summary

Within the past 20 years, drilled shaft installation plans for FDOT projects have transitioned from requiring no mass concrete information regardless of shaft diameter (e.g. Ringling Causeway Bridge built in 2002 is supported on two 9-foot diameter shafts where differential temperature cage to core reached 67°F) to requiring steps to control temperature for some shafts. However, the specifications at the time of this report were in conflict:

- Concrete elements other than shafts are required to assess temperature for any element with a minimum dimension greater than 3 feet.
- Shafts greater than 6 feet in diameter require a review of potentially high temperatures or a temperature control plan, but not with dimensions between 3.5 feet (FDOT minimum size shaft) and 6 feet.
- For shafts supporting miscellaneous (non-bridge) structures, no temperature control is required regardless of dimensions.

This conflict in part was the motivation for this study.

In recent years, post-construction integrity testing of drilled shafts has become commonplace to determine the distribution of concrete volume, local radii, and cage eccentricity. This has been made possible via temperature measurements and good inspection records. However, the consideration of long-term durability of drilled shafts has not received equal attention as evidenced by the exclusion of drilled shafts in many mass concrete specifications when considering internal temperature limits. The term mass concrete historically stems from massive structures that would generate unsafe temperature levels, but with nominal strength concrete containing low cementitious material contents (e.g. the Hoover Dam built circa 1931-35 is 45 feet thick near the top and 660 feet thick near the bottom, 726 feet tall, and 1233 feet long). Today, concrete mix designs use far more cementitious materials per unit volume. Consequently, unsafe temperature levels can occur within nearly any size foundation element if the cementitious materials content is high enough. While the limiting temperature thresholds can be debated, concrete durability is negatively affected by multiple consequences of excessive temperature during curing.

Recently, the American Concrete Institute (ACI) suggested restrictions on a concrete element dimension and the weight of cementitious materials per unit volume (Figure 1.3) to control peak and/or differential temperature generation. Unfortunately, it is unclear under what criterion (peak,

differential, mill certificate composition, etc.) an element size and cementitious material content either failed (red) or passed (green). Using the ACI criteria, a typical FDOT drilled shaft concrete with the minimum specified 600 lbs/yd³ of cementitious materials would be restricted to a size no larger than 2 feet in diameter; the minimum FDOT shaft diameter is 3.5 feet. Hence, the ACI criteria, if applied to FDOT projects, requires all shafts to provide a temperature control plan. The disconnect between FDOT shafts and the ACI criteria is two-fold: (1) the curing conditions of underground concrete are not the same as above-ground formed and poured elements, and (2) FDOT peak temperature limits are higher than ACI limits.

This study explored three areas to better define when a drilled shaft should be considered for mass concrete review: (1) past thermal integrity data, (2) shafts instrumented with centralized temperature measurement apparatuses, and (3) numerical modeling calibrated by field measurements and extended to multiple size and concrete mix designs to predict internal peak and differential temperature magnitudes.

In the first part of this study, shaft temperature information was obtained from hundreds of shafts routinely tested using thermal integrity methods. Time of testing (temperature measurements) ranged from 10 to 140 hours and recall thermal integrity measurements are taken at the location of the cage. Out of 662 cage-based measurements [not core temperatures], 5 shafts (0.8%) exceeded the FDOT 180°F peak temperature criterion and 90 (13.6%) exceeded the ACI 158°F peak temperature limit (Figure 2.2). This raises two points: (1) core temperature will always be higher than the thermal integrity cage measurements, and (2) thermal integrity testing was not necessarily conducted at peak temperature. Some were close to the time of peak temperature (i.e. 24-48 hours), but most were not. Thus, methods to predict the core temperature from cage measurements were developed.

The second part of the study involved field measurements where the limitations of cage based thermal integrity measurements were remedied. To ensure the temperature was collected at the time of peak temperature, permanently installed thermal sensors were used where the temperature was monitored from the time of initial casting to well past the peak temperature. Secondly, a series of cage measurement modifications were introduced where crisscrossing rebar were used to secure thermal sensors at the center of the cage. However, as the cage is not always centered/concentric in the excavation, the center of cage is likely to not be the hottest region of the shaft cross section. Hence, additional sensors were secured to the crisscrossing rebar to show the diametric temperature distributions in orthogonal directions (e.g., N-S and E-W). These data showed a near perfect fit for temperature versus radial position with a parabolic function.

With the success of the across-shaft temperature measurements, an offset thermal wire configuration was introduced with the intent of exploring temperature gradient. The measurements taken from the offset thermal wires were compared to thermal probe measurements and were found

to match closely. While this is a good start, these gradients over relatively small distances should be compared against corresponding full across-shaft temperature distributions to determine if the small gradient is truly representative of the parabolic slope.

In part three, the results of extensive numerical modeling were presented with the intent of better quantifying the circumstances most likely to lead to mass concrete conditions in drilled shafts. Three typical cementitious material content proportions were considered: Portland cement and fly ash, Portland cement and slag, and pure Portland cement. Selection of the modeled fly ash and slag proportions were based on two typical mixes found to occur most frequently in the database of shafts where temperature measurements and mix design were furnished. Other cementitious materials proportions can be similarly modeled.

Model results were verified using field measurements where the peak temperature, temperature distribution across the shaft, and temperature versus time relationships matched closely. With this validation, the temperature results from the wide range of modeled parameters were used to identify the conditions that cause a drilled shaft to exceed ACI and/or FDOT temperature limit criteria. Closed-form equations were developed for the three mix design types where the shaft size and total cementitious material content was input. Depending on the equation used, peak temperature, true differential (edge-to-core) temperature, or cage-to-core differential temperature can be estimated. The peak temperature and true differential temperature equations can be used as pre-construction design aids, while the cage-to-core differential temperature prediction can be added to the maximum average cage temperature routinely measured in the field to determine if a given shaft has exceeded the peak temperature limit (ACI and/or FDOT). The error associated with these equations was determined for drilled shafts three feet in diameter or larger with TCC between 560-1060 lb/yd³ based on the fitted function value and the model determined values. The errors are as follows:

- Cage-to-core differential equations
 - 34% fly ash, +1.9/-0.3°F
 - 60% slag, +2.4/-1.5°F
 - 100% Portland cement, +1.3/-1.1°F
- Edge-to-core differential equations
 - 34% fly ash, +2.6/-1.0°F
 - 60% slag, +2.5/-2.6°F
 - 100% Portland cement, +6.5/-3.9°F
- Peak temperature equations
 - 34% fly ash, +4.6/-2.0°F
 - 60% slag, +4.5/-2.4°F
 - 100% Portland cement, +3.3/-10.9°F

A database of thermal integrity tests for drilled shafts constructed with slag mixes was evaluated using the peak and differential temperature prediction relationships. This database consisted of a total of 70 shafts. Shaft diameters ranged from 42 to 78 inches and total cement contents ranged from 660 to 930 lbs/yd³. The most frequently occurring shaft diameter was 72 inches; 68 of the 70 shafts were 72 inches or smaller, which were excluded from mass concrete considerations by FDOT specifications at the time of this study (FDOT, 2019c). The average TCC was 760 lbs/yd³. Figures 5.1 and 5.2 show the edge-to-core differential temperature and peak temperature predictions, respectively. All but one drilled shaft (98.6%) exceeded the ACI differential temperature limit of 35°F. Forty-three shafts (61%) exceeded the ACI peak temperature limit of 158°F and four (6%) exceeded the ACI never-to-exceed peak temperature limit of 185°F. The primary motivation behind these temperature limitations is to prevent long-term durability issues in concrete structures.

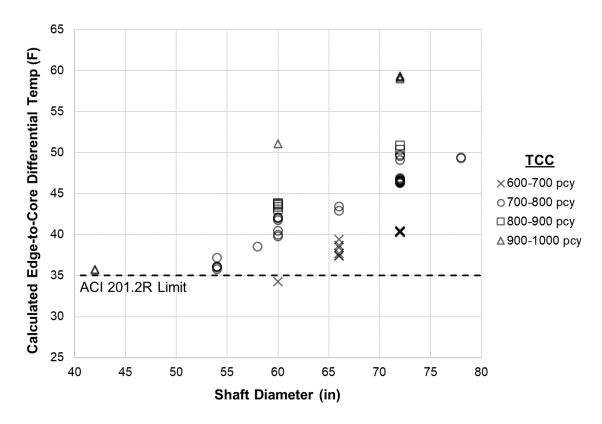


Figure 5.1 Plot presenting edge-to-core differential temperatures calculated from the database of drilled shafts with previously collected thermal data versus shaft diameter organized by TCC. [This is a plot presenting calculated edge-to-core differential temperatures on the y-axis versus shaft diameter on the x-axis for 70 drilled shafts where thermal data was previously collected (a subset of the data presented in Chapter 2 of this report). Temperatures range from approximately 34°F to 59°F. All drilled shafts in this data subset were constructed with slag blended mixes. This plot also marks the differential temperature limit specified in ACI 201.2R at 35°F.]

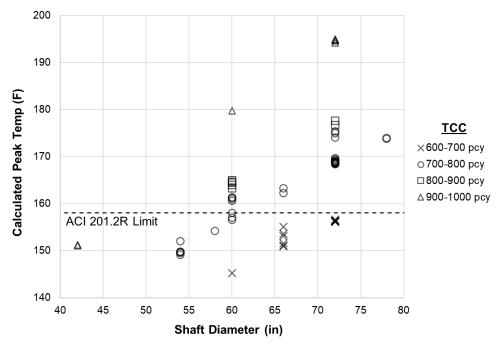


Figure 5.2 Plot presenting peak temperatures calculated from the database of drilled shafts with previously collected thermal data versus shaft diameter organized by TCC. [This is a plot presenting calculated peak temperatures on the y-axis versus shaft diameter on the x-axis for 70 drilled shafts where thermal data was previously collected (a subset of the data presented in Chapter 2 of this report). Temperatures range from approximately 145°F to 195°F. All drilled shafts in this data subset were constructed with slag blended mixes. This plot also marks the peak temperature limit specified in ACI 201.2R at 158°F.]

In addition to mix design and shaft diameter, cementitious constituent composition also plays a significant role in peak temperature. Figure 5.3 illustrates the average temperature profiles (taken at the reinforcement cage) from the HEFT II shaft (Chapter 2) and OC-19 (Chapter 4); both were 6 feet in diameter, and both were 60% slag mixes. OC-19 had a 7-foot diameter surface casing which made the upper 10 feet of the shaft warmer. Comparing just the hottest portion of the 6-foot diameter regions, the peak average temperatures were 118°F at 15 feet (OC-19) and 184°F at 23 feet (HEFT II). At first glance, the logical explanation for the large difference in cage temperature would be the TCC (660 vs 924 lb/yd³). However, the peak temperature contours presented in Chapter 4 (Figure 4.4) indicate a 6-foot shaft with 924 lb/yd³ TCC is predicted to have a peak core temperature of approximately 193°F which is only slightly higher than the measured 184°F average cage temperature. Figure 5.4 shows the modeled across-shaft temperature distribution for six-foot shafts with TCC values ranging from 660lbs/yd³ (OC-19) to 960lbs/yd³ (just higher than the 925lbs/yd³ for the HEFT II shaft). The open diamond-shaped marker denotes the interpolated predicted cage temperature for the hotter shaft to be 145°F, 39°F less than measured. The corollary is the model-predicted core temperature of 193°F is likely to have underpredicted the actual core temperature by at least 39°F making the core >232°F.

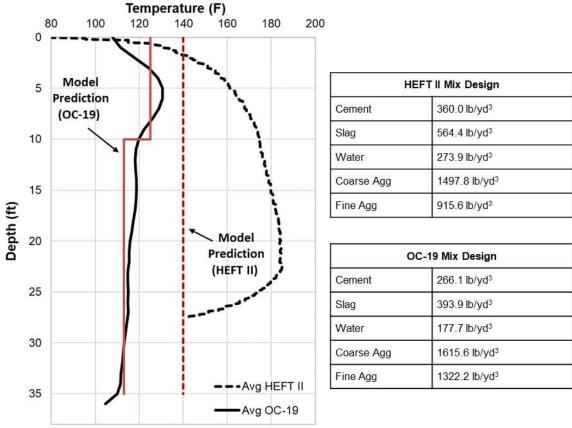


Figure 5.3 Disparate temperature profiles.

[This is a compound figure with a plot on the left where the x-axis is temperature and the y-axis is depth and the data presented includes the measured average cage temperatures for drilled shaft OC-19 with the corresponding model temperatures overlayed as well as the measured average cage temperatures for the HEFT-II drilled shaft with the corresponding model temperatures overlayed. On the right are the concrete mix designs for both drilled shafts.]

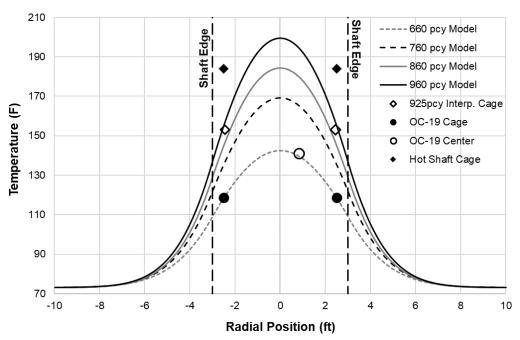


Figure 5.4 Comparison between model data, measured OC-19 data, and measured HEFT II data. [This is a plot where the x-axis is radial position in feet and the y-axis is temperature and the data presented includes across-shaft modeled temperature distributions for total cementitious contents ranging from 660 lb/yd³ to 906 lb/yd³, as well as data points for interpolated cage temperature for a 925 lb/yd³ mix, measured average cage temperature for drilled shaft OC-19, measured center wire temperature for drilled shaft OC-19, and measured average cage temperature for drilled shaft HEFT-II.]

The 60% slag model results were based on the cementitious constituent compositions for OC-19 and are representative of the most common shaft mixes presently used in Florida. The mill certifications for the cement and slag used in the HEFT II shaft were not available but were expected to have been quite different. Due to hydration being such a complex process, particularly with slag-blended cements, the differences in physical and chemical characteristics are likely to have drastically affected the heat energy production during curing (Zhu et al., 2022). It is known that alumina content, MgO/Al₂O₃ (M/A) ratio, and slag fineness all contribute to how much or fast heat energy is produced (Zayed et al., 2019). This extreme variation in curing performance gives cause to revisit the HEFT II shaft for core samples and testing. Since the HEFT II shaft construction in 2018, a sufficient amount of time has elapsed for any durability issues such as thermal cracking, delayed ettringite formation, or concrete strength reduction to be revealed.

Variations in slag constituent composition is now being joined by changes in fly ash compositions and definitions. As of 2023, ASTM Committee C09 allows for the use of blended fly ash and bottom ash, resulting in coal ash (ASTM, 2023). This has the potential for significant changes in concrete performance, as bottom ash is known to be generally inert compared to fly ash (Thomas et al., 2017). Without accurate and standardized mill certificate reporting, modeling

results cannot be used reliably. With respect to minerology, typically Bogue calculations are used to determine C3S, C2S, C3A, and C4AF, however this can lead to discrepancies in quantification by up to 10%. Quantitative x-ray diffraction is more accurate for quantifying cementitious minerals and can identify specific mineral forms (e.g., calcium sulfate). Further, the α , β , τ parameters on which the modeling results are based do not account for the variability in slag and fly ash constituent compositions that are found in the field today.

Where mass concreting programs are concerned, core and cage temperatures are typically used to determine differential temperature, however the cage-to-core and edge-to-core contour plots show that there can be as much as a 30°F difference between the two. This raises the questions: which is more correct, or are neither correct if a center bar is not centered? Should the differential between the hottest and coldest parts of the shaft (184-80=104°F, Figure 2.10) be considered regardless of where they occur? Or, is the largest temperature gradient (°F/in) most likely more important when identifying cracking stress potential?

To date, the rationales for setting peak and differential temperature limits vary and are likely to continue to be in dispute given the variability of cementitious constituent compositions. This variability can be found in the materials used by the researchers leading up to these conclusions / specifications. This study did not aim to address which of the two temperature criteria are most correct, but rather focused on determining the actual peak and differential temperature in drilled shafts with varied concrete mix designs and from shafts of different diameters. However, the threshold of safety is left to the reviewer when using a given acceptance criteria (FDOT, ACI, or other).

Finally, the current specifications for all concrete elements need to be unified. Drilled shafts should not be exempted from mass concrete specifications, nor should any element; even 30-in diameter elements have been shown to exceed peak temperature limits for both FDOT and ACI.

5.2 Conclusions and Recommendations

Based on the findings of this study the following points can be made:

- Specialized field temperature measurements confirmed the relationship between temperature and radial position across the diameter of a drilled shaft within the reinforcement cage to be parabolic.
- It is possible that the temperature measurements taken by the individual sensors of a thermal probe can be used to calculate temperature gradient across commonly placed access tubes in drilled shafts, however further investigation is needed to confirm this gradient is truly representative of the parabolic slope.

- Based on the predicted edge-to-core differential temperatures and peak temperatures estimated from a database of 70 drilled shafts constructed with concrete mixes using slagblended cement, most drilled shafts excluded from mass concrete considerations exceed one or both ACI temperature limitations (peak and differential).
- Chemical and physical characteristics of cementitious material play a significant role in heat energy production and should be considered alongside cementitious material replacement level when designing drilled shafts.
- Designer-friendly contour plots and closed-form equations were developed from models to determine when a given project should include a mass concrete control plan. The mill certs for the modeled cementitious materials can be considered typical, not highly reactive, and predicted temperature values should not overpredict field temperature values.
- It is recommended that the HEFT II shaft in Miami, Florida be revisited for core samples and testing to determine if long-term concrete durability has been affected by extreme curing temperatures.
- Further investigation into how differential temperature is determined is recommended, as it is unclear whether differential should be taken between the hottest and coldest parts of a shaft, between core and edge, or if the largest temperature gradient is more effective when identifying cracking stress potential.
- The 35°F differential is exceeded by virtually all drilled shafts, yet a commensurate amount damage or cases have not been seen. A more robust criterion for differential temperature limits is needed.
- Including mill certificates as part of shaft installation plans and/or submittal documents is recommended.
- Mill certs are not presently standardized; standardized mill certificate reporting is recommended for all cementitious material types.
- Sized-based guidelines for mass concrete considerations are obsolete given the increase in total cementitious contents used in recent years, therefore it is recommended that specifications move away from this approach with prioritization on performance-based guidelines.
- Evaluation of all drilled shafts for possible mass concrete considerations is recommended.

References

- ACI. (2021). ACI-CT ACI Concrete Terminology. In. Farmington Hills, MI: American Concrete Institute.
- ACI Committee 116. (2000). ACI 116R-00 Cement and Concrete Terminology. In. Farmington Hills, MI: American Concrete Institute.
- ACI Committee 201. (2016). ACI 201.2R-16 Guide to Durable Concrete. In. Farmington Hills, MI: American Concrete Institute.
- ACI Committee 207. (2007). ACI 207.2R-07 Report on Thermal and Volume Change Effects on Cracking of Mass Concrete. In. Farmington Hills, MI: American Concrete Institute.
- ACI Committee 207. (2021). ACI PRC-207.1-21 Mass Concrete Guide. In. Farmington Hills, MI: American Concrete Institute.
- ACI Committee 224. (2001). ACI 224R-01 Control of Cracking in Concrete Structures. In. Farmington Hills, MI: American Concrete Institute.
- ACI Committee 301. (2016). ACI 301-16 Specifications for Structural Concrete. In. Farmington Hills, MI: American Concrete Institute.
- ACI Committee 308. (2016). ACI 308R-16 Guide to External Curing of Concrete. In. Farmington Hills, MI: American Concrete Institute.
- ASTM (2014). "D7949-14, Standard Test Methods for Thermal Integrity Profiling of Concrete Deep Foundations." ASTM International, West Conshohocken, PA.
- ASTM (2023). "C618-23, Standard Specification for Coal Ash and Raw or Calcined Natural Pozzolan for Use in Concrete." ASTM International, West Conshohocken, PA.
- Farouki, O. T. (1966). "Physical Properties of Granular Materials with Reference to Thermal Resistivity." *Highway Research Record*.
- FDOT. (2019a). Standard Specifications for Road and Bridge Construction. In *346-3.3 Mass Concrete*. Tallahassee, FL: Florida Department of Transportation.
- FDOT. (2019b). Structures Design Guidelines. In Section 1.4.4, Mass Concrete. Tallahassee, FL: Florida Department of Transportation.
- FDOT. (2019c). Structures Design Guidelines. In. Tallahassee, FL: Florida Department of Transportation.
- Gunaratne, M. (2014). The Foundation Engineering Handbook. CRC Press.
- InvenSense. (2013). MPU-6000 and MPU-6050 Product Specification Revision 3.4. In InvenSense (Ed.).

- Johnson, K. R. (2014). Temperature Prediction Modeling and Thermal Integrity Profiling of Drilled Shafts ASCE Geo-Congress, Atlanta, GA.
- Johnson, K. R. (2016). "Advancements in Thermal Integrity Profiling Data Analysis." Doctor of Philosophy, University of South Florida, Tampa, FL.
- Johnson, K. R. (2016). Analyzing thermal integrity profiling data for drilled shaft evaluation. *DFI Journal The Journal of the Deep Foundations Institute*, 10(1), 25-33. https://doi.org/10.1080/19375247.2016.1169361
- Johnson, K. R. (2017). Thermal Integrity Analysis of Concrete Bridge Foundations Using COMSOL Multiphysics® Software 2017 COMSOL Conference, Boston, Massachusetts
- Johnson, K. R., Mullins, G., and Winters, D. (2007). "Concrete Temperature Reduction via Voiding Drilled Shafts." Contemporary Issues in Deep Foundations, GSP No. 158, Vol. I, 1-12.
- Legner, J., Mullins, G., & Zayed, A. (2022). Structural Feasibility of Voided Drilled Shafts for Transmission Line Structure Foundations. American Concrete Institute, [Unpublished].
- Mullins, G. (2010). Thermal Integrity Profiling of Drilled Shafts. *DFI Journal The Journal of the Deep Foundations Institute*, 4(2), 54-64.
- Mullins, G. (2021). Personal Interview with G. Mullins Pertaining to Ongoing Unpublished Test Results in South Florida [Interview].
- Mullins, G., Johnson, K. R., and Winters, D. (2018). "Controlling Mass Concrete Effects in Large-Diameter Drilled Shafts Using Full-Length Central Void." *ACI Structural Journal*, 115(5).
- Mullins, G., & Kranc, S. (2007). *Thermal Integrity Testing of Drilled Shafts*. Florida Department of Transportation.
- Mullins, G., Winters, D., and Collins, J. (2009). "Foundation Health Monitoring, Final Report." FHWA, McLean, VA.
- Mullins, G., Winters, D., and Johnson, K. R. (2009). "Attenuating Mass Concrete Effects in Drilled Shafts, Final Report, FDOT Project BD-544-39." Florida Department of Transportation, Tallahassee, FL.
- Pauly, N. (2010). "Thermal Conductivity of Soils from the Analysis of Boring Logs." Master of Science in Civil Engineering, University of South Florida, Tampa, FL.
- Poole, J. L. (2007). *Modeling Temperature Sensitivity and Heat Evolution of Concrete* University of Texas at Austin.
- Schindler, A. K., Dossey, T., & McCullough, B. F. (2002). Temperature Control During Construction to Improve the Long Term Performance of Portland Cement Concrete Pavements.

- Schindler, A. K., & Folliard, K. J. (2005). Heat of Hydration Models for Cementitious Materials. *ACI Materials Journal*, 102(1), 24-33.
- Thomas, M., Jewell, R., & Jones, R. (2017). *Coal Combustion Products (CCP's)* (T. Robl, A. Oberlink, & R. Jones, Eds.). Woodhead Publishing.
- TRB (2018). Construction of mass concrete transportation infrastructure. Transportation Research Board (TRB) Webinar, August 6, 2018.
- Whitfield, T. T. (2006). "Effect of Tricalcium Silicate Content on Expansion in Internal Sulfate Attack." Masters of Science in Civil Engineering, University of South Florida, Tampa.
- Zayed, A., Riding, K. A., Stetsko, Y., Shanahan, N., Markandeya, A., Nosouhian, F., Mapa, D., & Fincan, M. (2019). Effects of Blast Furnace Slag Characteristics on Durability of Cementitious Systems for Florida Concrete Structures.
- Zhu, H., Mapa, D. G., Lucero, C., Riding, K. A., & Zayed, A. (2022). Effect of Slag Characteristics on Adiabatic Temperature Rise of Blended Concrete. *ACI Materials Journal*, 119(1).

SHOP DRAWING / SUBMITTAL REVIEW
NO EXCEPTIONS TAKEN MAKE CORRECTIONS NOTED
REVISE AND RESUBMIT REJECTED
SUBMITTAL WAS REVIEWED FOR DESIGN CONFORMITY AND GENERAL CONFORMANCE TO CONTRACT DOCUMENTS ONLY. THE CONTRACTOR IS RESPONSIBLE FOR CONFIRMING AND CORRELATING DIMENSIONS AT JOBSITE FOR TOLERANCE, CLEARANCE, QUANTITIES, FABRICATION PROCESSES AND TECHNIQUES OF CONSTRUCTION, COORDINATION OF HIS WORK WITH OTHER TRADES AND FULL COMPLIANCE WITH CONTRACT DOCUMENTS.
By: Date:D
SOUTH FLORIDA

Figure A.1 Genshaft Honors College concrete mix design submittal page 1.

Submittal #31 63 29-1.0

The Beck Group 220 West 7th Avenue, Suite 200 Tampa, Florida 33602 Phone: (813) 282-3900 Fax: (813) 288-0188 Project: 171685 - University of South Florida Judy Genshaft Honors College 4202 E. Fowler Ave Tampa, Florida 33620

DM-Drilled Pier SPEC SECTION: 31 63 29 - DRILLED CONCRETE PIERS FINAL DUE DATE: ISSUE DATE: 1/12/2021 TYPE: Design Mixtures REVISION: 0 RESPONSIBLE R.W. Harris, Inc. RECEIVED FROM: Dean Cacio CONTRACTOR: DESCRIPTION: Concrete Mix Design: Submit concrete mix designs suitable for method of concrete placement for Engineer and Owner's Testing Laboratory approval prior to pier installation. ATTACHMENTS: STAMPS HCBeck, Ltd. SUBMITTAL STAMP ■ NO EXCEPTIONS TAKEN REVISE AND RESUBMIT REVIEWED AS TO GENERAL COMPLIANCE WITH THE CONTRACT DOCUMENTS. SUBMITTER TO VERIFY DIMENSIONS, QUANTITIES, AND FIELD CONDITIONS FOR PROPER AND COMPLETE PERFORMANCE OF THE SUBMITTED ITEMS. REVIEW DOES NOT RELIEVE SUBMITTER FROM RESPONSIBILITY FOR ERRORS OR DEVIATIONS FROM CONTRACT DOCUMENTS. REVIEW DOES NOT CONSTITUTE APPROVAL OF SAFETY PRECAUTIONS OR OF ANY CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES OR PROCEDURES. REVIEW OF A SPECIFIC ITEM SHALL NOT INDICATE APPROVAL OF AN ASSEMBLY OF WHICH THE ITEM IS A COMPONENT. EXCEPTIONS NOTED SUBMIT SPECIFIED ITEM(s) Checking is only for general conformance with design concept of the project and for general compliance with Contract Documents. Contractor is responsible for confirming and correcting dimensions at job sites for information which pertains to fabrication processes or construction techniques and for coordination of work of all trades. Checking of shop drawings shall not relieve the Contractor of responsibility for deviances from requirements of Contract Documents and for errors and omissions in the shop drawings. BY: Anthony De Furio (WPM) DATE: 01/04/2021 WALTER P MOORE AND ASSOCIATES, INC. REVIEWED BY: Charlotte Hart DATE:12/21/2020 REJECTED ☐ REVISE AND RESUBMIT SUBMITTAL FOR REVIEW ☐ SUBMITTAL FOR INFORMATION ☐ RESUBMITTAL FOR REVIEW

The Beck Group Page 1 of 2 Printed On: 12/21/2020 02:00 PM

Figure A.2 Genshaft Honors College concrete mix design submittal page 2.

Submittal #31 63 29-1.0

SUBMITTAL WORKFLOW

NAME	SUBMITTER/ APPROVER	SENT DATE	DUE DATE	RETURNED DATE	RESPONSE	ATTACHMENTS	COMMENTS
Dean Cacio	Submitter	12/18/2020	12/21/2020	12/21/2020	Submitted	DM-Drilled Pier.pdf	Please see the attached concrete design mixture submittal for the drilled piers.
Shawn Nelson	Submitter	12/21/2020	12/21/2020		Pending		
Charlotte Hart	Approver	12/21/2020	12/28/2020	12/21/2020	Pending		Please see the attached concrete design mix submittal for the drilled piers for review.
Tyler Schaub	Approver	12/21/2020	12/28/2020		Pending		
Edmund Kwong	Approver	12/21/2020	1/12/2021		Pending		
Marcel Maslowski	Approver	12/21/2020	1/12/2021		Pending		
Joe Phommachakr	Approver	12/21/2020	1/12/2021		Pending		

The Beck Group Page 2 of 2 Printed On: 12/21/2020 02:00 PM

Figure A.3 Genshaft Honors College concrete mix design submittal page 3.

 Submittal No.
 64156
 Argos
 Telephone:
 (813) 962-3213

 Date Issued:
 12/18/2020
 5920 W. Linebaugh Ave.
 Fax
 (813) 968-5769

 Tampa, FL 33624
 Cell:
 (813) 376-4472

Contractor: RW HARRIS INC

Project: USF HONORS COLLEGE

To Whom It May Concern:

We are submitting these mixes in accordance with ACI 318 (Chapter 5), proportioning on the basis of field experience and/or the trial mixture method:

 Mix Code Number
 Description
 Intended Use

 6UAG 92
 6000JSAIRSLAGDSCHRWR
 6000 PSI DRILL SHAFT

When placing orders for this project, please order by product mix code number.

Argos warrants that the concrete as delivered to this project will meet or exceed the design strength specified on the delivery ticket when evaluated in accordance with ACI-318, ACI-301, and ASTM C-94, latest revision. The measured slump, and the concrete must be tested in strict accordance with the provisions of ASTM standards C-172, C-143, C-31, C-39, C-617, C-231, C-173, C-138, C-1019, C-78, C-567, C-1064, latest revisions.

All samples and testing of samples for acceptance shall be conducted at the point of discharge from the concrete delivery truck.

Should the Purchaser choose not to purchase temperature control measures, the Purchaser shall assume all liability for rejected concrete due to non-compliant concrete temperatures.

Responsibility for concrete when others supply mix designs will be the sole responsibility of those parties supplying the mix design.

Customer assumes total responsibility for concrete placement, finishing, initial and final curing, placement of joints at proper spacing, and any aesthetic concerns/issues (such as cracks, discoloration, etc.) that may arise in the plastic and hardened state.

The contents of this packet, with particular consideration in regard to the mix designs themselves, are considered proprietary in nature and are to be treated as confidential.

This information is being submitted for approval for use on this project. Please provide Argos an approved copy or a copy with the notes for correction of this submittal, when available.

Concrete will be delivered to the nearest accessible point over passable roads; customer assumes responsibility for all damages to city, state, and personal property, including concrete mixer truck if customer instructs concrete mixer truck to drive beyond curb lines.

Customer should provide concrete mixer truck with wash down area.

In accordance with ASTM C-94, please copy our office with all test results obtained on this concrete by independent testing laboratories.

Thank you for your business and cooperation in this matter.

Figure A.4 Genshaft Honors College concrete mix design submittal page 4.

 Date Issued:
 12/18/2020
 Argos
 Telephone:
 (813) 962-3213

 Submittal No.
 64156
 5920 W. Linebaugh Ave.
 Fax
 (813) 968-5769

 Customer:
 RW HARRIS INC
 Tampa, FL 33624
 Cell:
 (813) 376-4472

Project: USF HONORS COLLEGE

Mix Code: 60JA	G 92 Mix Code must i	be used when ordering concrete.		Weight		
Material	Material Ty	лре	ASTM	(lb)		
Cement	Type IL		C 595	275		
Slag	Slag		C 989	425		
Coarse Aggregate	# 57		C 33	1,450		
Fine Aggregate	Natural S	and	C 33	1,362		
Water	Water		C 1602	275		
Admixture	Air Entrai	ner	C 260	0.5 oz/cy		
Admixture	Stabilizer	\$	C 494 Type D	2.00 to 10.00 oz/cwt CM		
Admixture	Туре F Н	igh Range Water Reducer	C 494 Type A/F	2.00 to 10.00 oz/cwt CM		
Specified F'c :	6,000 psi @ 28 days	Designed Unit Weight:	140.2 lbs./cu.ft.	TOTAL 3,787		
Slump:	8.50 +/- 1.50 in.	Designed W/C + P Ratio:	0.39			
Air:	3.00 +/- 3.00 %	Designed Volume:	27.00 cu.ft.			

NOTES

Argos has no knowledge or authority regarding where this mix is to be placed; therefore, it is the responsibility of the project architect, engineer, and/or contractor to ensure that the above designed mix parameters of compressive strength, water-to-cementitious ratio (WI/C+P), cement content, and air content are appropriate for the anticipated environmental conditions (ie. ACI-318 sections 4.1-4.3, and local Building Codes).

Customer assumes total responsibility for concrete placement, finishing, initial and final curing, placement of joints at proper spacing, and any aesthetic concerns/issues (such as cracks, discoloration, etc.) that may arise in the plastic and hardened state.

Customer assumes responsibility for any performances issues (strength, aesthetic, durability, air entrainment etc.) as a result of water added to concrete at the project site that exceeds the w/c+p.

Designed mix cementitious content, is stated as a minimum, and Argos reserves the right to increase cementitious content. Chemical admixtures are added in accordance with the manufacturer's recommendations. Argos reserves the right to adjust these dosages to meet the changes in jobsite demands.

All raw materials are subject to change depending on availability. All substitutes are quaranteed to meet or exceed projects performance specification requirements.

Argos may use admixtures or procedures not listed above to control the mixture during Hot or Cold weather, for pumping, long hauls, or other special applications, unless restricted in writing by the client.

In accordance with ASTM C-94, please copy our office with all test results obtained on this concrete by independent testing laboratories.

COMMENTS:

PER SPEC 03 30 00 SECTION 2.1.F.1, SUBMIT CERTIFICATION THAT AGGREGATE DOES NOT CONTAIN ANY DELETERIOUS MATERIALS THAT REACT WITH ALKALIS IN THE CONCRETE MIX TO CAUSE EXCESSIVE EXPANSION.

Ron Hurn Sales

PROVIDE TEST DATA DOCUMENTING CONCRETE PROPERTIES INCLUDING 28 DAY STRENGTH.

1992 - 2020 Quadrel, Inc. Quadrel iService SM

Figure A.5 Genshaft Honors College concrete mix design submittal page 5.

University of South Florida

567 - USF Honors College Submittal

2/8/2021

31 63 29-9

CRT-Drilled Pier

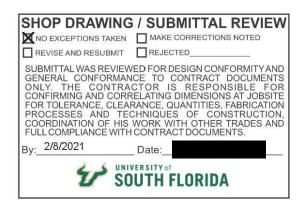


Figure A.6 Genshaft Honors College certification data submittal page 1.

Submittal #31 63 29-9.0

The Beck Group 220 West 7th Avenue, Suite 200 Tampa, Florida 33602 Phone: (813) 282-3900 Fax: (813) 288-0188 Project: 171685 - University of South Florida Judy Genshaft Honors College 4202 E. Fowler Ave Tampa, Florida 33620

CRT-Drilled Pier 31 63 29 - DRILLED CONCRETE PIERS SPEC SECTION: FINAL DUE DATE: ISSUE DATE: 1/21/2021 2/14/2021 REVISION: TYPE: Certificates 0 RESPONSIBLE RECEIVED FROM: R.W. Harris, Inc. Dean Cacio CONTRACTOR: DESCRIPTION Certification data for concrete sources and design mixtures for drilled piers ATTACHMENTS: STAMPS HCBeck, Ltd. SUBMITTAL STAMP NO EXCEPTIONS TAKEN REVISE AND RESUBMIT REVIEWED AS TO GENERAL COMPLIANCE WITH THE CONTRACT DOCUMENTS. SUBMITTER TO VERIEY DIMENSIONS, QUANTITIES, AND FIELD CONDITIONS FOR PROPER AND COMPLETE PERFORMANCE OF THE SUBMITTED ITEMS, REVIEW DOES NOT RELIEVE SUBMITTER FROM RESPONSIBILITY FOR ERRORS OR DEVIATIONS FROM CONTRACT DOCUMENTS, REVIEW DOES NOT CONSTITUTE APPROVAL OF SAFETY PRECAUTIONS OR OF ANY CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES OR PROCEDURES, REVIEW OF A SPECIFIC ITEM SHALL NOT INDICATE APPROVAL OF AN ASSEMBLY OF WHICH THE ITEM IS A COMPONENT. ☐ EXCEPTIONS NOTED SUBMIT SPECIFIED ITEM(s) Checking is only for general conformance with design concept of the project and for general compliance with Contract Documerts. Contractor is responsible for confirming and correcting dimensions at job sites for information which pertains to fabrication processes or construction techniques and for coordination of work of all trades. Checking of shop drawings shall not relieve the Contractor for responsibility for deviances from requirements of Contract Documents and for errors and omissions in the shop drawings. BY: Anthony De Furio (WPM) DATE: 01/25/2021 REVIEWED BY: Charlotte Hart WALTER P MOORE AND ASSOCIATES, INC. REJECTED ☐ REVISE AND RESUBMIT SUBMITTAL FOR REVIEW SUBMITTAL FOR INFORMATION ☐ RESUBMITTAL FOR REVIEW

The Beck Group Page 1 of 2 Printed On: 01/21/2021 11:36 AM

Figure A.7 Genshaft Honors College certification data submittal page 2.

Submittal #31 63 29-9.0

SUBMITTAL WORKFLOW

NAME	SUBMITTER/ APPROVER	SENT DATE	DUE DATE	RETURNED DATE	RESPONSE	ATTACHMENTS	COMMENTS
Dean Cacio	Submitter		1/26/2021	1/21/2021	Submitted	RW HARRIS - USF HONORS COLLEGE - 60JAG92 - 012121 Concrete submittal.pdf	Please see attached certificates for concrete mills and material for the drilled piers.
Charlotte Hart	Approver	1/21/2021	1/26/2021		Pending		
Tyler Schaub	Approver	1/21/2021	1/26/2021		Pending		
Marcel Maslowski	Approver		2/9/2021		Pending		
Joe Phommachakr	Approver		2/9/2021		Pending		
Adam Linton	Approver		2/14/2021		Pending		

The Beck Group Page 2 of 2 Printed On: 01/21/2021 11:36 AM

Figure A.8 Genshaft Honors College certification data submittal page 3.

Letter Of Transmittal

01/21/2021 6:08:17AM Report 249901 (internal use only) Please use the **submittal number** located on the following pages when referring to the set of documents contained within this submittal.

The following items are included in this mix submittal:

Fla_Argos Newberry Type IL PLC Data Sheet Florida.pdf attachment for Submittal #64156 for Project: USF HONORS COLLEGE

Fla_Argos Slag Mill Certification 011921.pdf attachment for Submittal #64156 for Project: USF HONORS COLLEGE

Fla_Vulcan Tampa 57 cert ltr 12-20.pdf attachment for Submittal #64156 for Project: USF HONORS COLLEGE

Fla_Vulcan Diamond DOT cert ltr 12-20.pdf attachment for Submittal #64156 for Project: USF HONORS COLLEGE

Fla_Adva Cast 600 Certification.pdf attachment for Submittal #64156 for Project: USF HONORS COLLEGE

Fla_Adva Cast 600 Data Sheet.pdf attachment for Submittal #64156 for Project: USF HONORS COLLEGE

Fla_Darex AEA Certification.pdf attachment for Submittal #64156 for Project: USF HONORS COLLEGE

Fla_Darex AEA Data Sheet.pdf attachment for Submittal #64156 for Project: USF HONORS COLLEGE

Fla_Recover Certification.pdf attachment for Submittal #64156 for Project: USF HONORS COLLEGE Fla_Recover Data Sheet.pdf attachment for Submittal #64156 for Project: USF HONORS COLLEGE

Fla_Argos Ready Mix Concrete Safety Data Sheet.pdf attachment for Submittal #64156 for Project: USF HONORS COLLEGE

Submittal #64156 for Project: USF HONORS COLLEGE

Detailed Data for Submittal #64156

Backup Data for Mix:60JAG92 of Submittal #64156 for Project: USF HONORS COLLEGE

FIa_Argos Newberry IL Mill Certification 011921.pdf attachment for Submittal #64156 for Project: USF HONORS COLLEGE

1992 - 2021 Quadrel, Inc. Page 1 Quadrel iService SM

Figure A.9 Genshaft Honors College certification data submittal page 4.

 Submittal No.
 64156
 Argos
 Telephone:
 (941) 351-9611

 Date Issued:
 1/21/2021
 8225 25th Court East
 Fax:
 (941) 355-5890

 Sarassta FL 34243
 Sarassta FL 34243

Contractor: RW HARRIS INC
Project: USF HONORS COLLEGE

To Whom It May Concern

We are submitting these mixes in accordance with ACI 318-14 per Governing Building Code IBC 2018, proportioning on the basis of field experience and/or the trial mixture method:

 Mix Code Number
 Description
 Intended Use

 60JAG 92
 6000JSAIRSLAGDSCHRWR
 6000 PSI DRILL SHAFT

When placing orders for this project, please order by product mix code number.

Argos warrants that the concrete as delivered to this project will meet or exceed the design strength specified on the delivery ticket when evaluated in accordance with ACI-318, ACI-301, and ASTM C-94, latest revision. The measured slump, and the concrete must be tested in strict accordance with the provisions of ASTM standards C-172, C-143, C-31, C-39, C-617, C-231, C-173, C-138, C-1019, C-78, C-567, C-1064, latest revisions.

All samples and testing of samples for acceptance shall be conducted at the point of discharge from the concrete delivery truck.

Should the Purchaser choose not to purchase temperature control measures, the Purchaser shall assume all liability for rejected concrete due to non-compliant concrete temperatures.

Responsibility for concrete when others supply mix designs will be the sole responsibility of those parties supplying the mix design.

Customer assumes total responsibility for concrete placement, finishing, initial and final curing, placement of joints at proper spacing, and any aesthetic concerns/issues (such as cracks, discoloration, etc.) that may arise in the plastic and hardened state.

The contents of this packet, with particular consideration in regard to the mix designs themselves, are considered proprietary in nature and are to be treated as confidential.

This information is being submitted for approval for use on this project. Please provide Argos an approved copy or a copy with the notes for correction of this submittal, when available.

Concrete will be delivered to the nearest accessible point over passable roads; customer assumes responsibility for all damages to city, state, and personal property, including concrete mixer truck if customer instructs concrete mixer truck to drive beyond curb lines.

Customer should provide concrete mixer truck with wash down area.

In accordance with ASTM C-94, please copy our office with all test results obtained on this concrete by independent testing laboratories.

Thank you for your business and cooperation in this matter.

Todd Blanchard
Quality Assurance Technician

1992 - 2021 Quadrel, Inc.
Page 2
Quadrel iService

Figure A.10 Genshaft Honors College certification data submittal page 5.

 Date Issued:
 1/21/2021
 Argos
 Telephone:
 (941) 351-9611

 Submittal No.
 64156
 8225 25th Court East
 Fax
 (941) 355-5890

 Crustomer
 PW HARDIS INC
 Sarasota FL 34243

Customer: RW HARRIS INC Project: USF HONORS COLLEGE

Mix Code: 60JA	. G 92 Mix Code must i	be used when ordering concrete.		Weight
Material	Material Ty	ре	ASTM	(lb)
Cement	Type IL	55	C 595	275
Slag	Slag		C 989	425
Coarse Aggregate	# 57		C 33	1,450
Fine Aggregate	Natural S	and	C 33	1,362
Water	Water		C 1602	275
Admixture	Air Entrai	ner	C 260	0.5 oz/cy
Admixture	Stabilizer		C 494 Type D	2.00 to 10.00 oz/cwt CM
Admixture	Type F H	gh Range Water Reducer	C 494 Type A/F	2.00 to 10.00 oz/cwt CM
Specified F'c :	6,000 psi @ 28 days	Designed Unit Weight:	140.2 lbs./cu.ft.	TOTAL 3,787
Slump:	8.50 +/- 1.50 in.	Designed W/C + P Ratio:	0.39	
Air:	3.00 +/- 3.00 %	Designed Volume:	27.00 cu.ft.	

NOTES:

Argos has no knowledge or authority regarding where this mix is to be placed; therefore, it is the responsibility of the project architect, engineer, and/or contractor to ensure that the above designed mix parameters of compressive strength, water-to-cementitious ratio (WIC+P), cement content, and air content are appropriate for the anticipated environmental conditions (ie. ACI-318 sections 4.1-4.3, and local Building Codes).

Customer assumes total responsibility for concrete placement, finishing, initial and final curing, placement of joints at proper spacing, and any aesthetic concerns/issues (such as cracks, discoloration, etc.) that may arise in the plastic and hardened state.

Customer assumes responsibility for any performances issues (strength, aesthetic, durability, air entrainment etc.) as a result of water added to concrete at the project site that exceeds the w/c+p.

Designed mix cementitious content, is stated as a minimum, and Argos reserves the right to increase cementitious content. Chemical admixtures are added in accordance with the manufacturer's recommendations. Argos reserves the right to adjust these dosages to meet the changes in jobsite demands.

All raw materials are subject to change depending on availability. All substitutes are guaranteed to meet or exceed projects performance specification requirements.

Argos may use admixtures or procedures not listed above to control the mixture during Hot or Cold weather, for pumping, long hauls, or other special applications, unless restricted in writing by the client.

In accordance with ASTM C-94, please copy our office with all test results obtained on this concrete by independent testing_laboratories.

COMMENTS:

Todd Blanchard Quality Assurance Technician

1992 - 2021 Quadrel, Inc. Page 3 Quadrel iService SM

Figure A.11 Genshaft Honors College certification data submittal page 6.

Mix Name: 60JAG92 Units: US

No. Of Tests	Avg Slump		Avg Air	A	trength vg 7 ay	s Avg 28 Day	Std Dev	ACI318 Req'd	
30			2.33			8190	650	6910	
הביד גדו ביד ה	e more	мсти	Comm			Either 4":	v 0" 0*	6" v 12"	
Date					n. gths	Acc A		0 X 12	
		7.		7 Day	28 Day	Run A	vg 3		
12/6/201		9.25			10020				
12/17/20					9630				
12/17/20					9110	9590			
12/17/20		9.00			8680	9140			
12/17/20	19	8.50		7320	9390	9060			
12/17/20	19	9.00		7280	8510	8860			
12/19/20		7.50		5600	6660	8190			
12/27/20	19	8.00		6450	7340	7500			
12/31/20		7.50		4410	7190	7060			
1/2/2020)	7.50		7750	9440	7990			
1/2/2020)	7.00		5920	7200	7940			
1/2/2020)	8.00		6200	6660	7760			
1/14/202	0	8.50		6260	7080	6980			
1/15/202	0	9.00		5850	6920	6890			
1/16/202	0	8.00		7250	8490	7500			
1/16/202	0:0	7.50		71 40	8590	8000			
1/16/202	0:0	7.00		7060	8560	8550			
1/16/202		8.00			7500	8220			
1/16/202		7.25			8060	8040			
1/16/202		8.50			6840	7470			
1/22/202		7.75			7480	7460			
2/14/202					7800	7370			
2/18/202			2.60		9820	8370			
2/22/202					9750	9120			
2/29/202			2.80		9960	9840			
4/15/202		7.50			8140	9280			
4/17/202		8.50			8340	8810			
5/26/202		7.50			7320	7930			
8/26/202		8.50			7920	7860			
8/28/202	0.0	7.75		6250	7360	7530			

1992 - 2021 Quadrel, Inc. Page 4 Quadrel iService SM

Figure A.12 Genshaft Honors College certification data submittal page 7.

2550 SUCCESS DR. • ODESSA, FLORIDA 33556 • (727)375-0388 • Fax (727)375-0358

TEST REPORT

A & S Project Number:

335485

Customer:

Vulcan Materials

Location:

Tampa Yard

Project Number:

N/A

Attention:

James Farmer

The results of tests performed in accordance with ASTM C1260-14 Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method) are as follows:

Aggregate:

57 Stone

Cement:

Argos Newberry Plant Portland Cement Type -IL (10)

Cement Percent Alkalis:

0.40 % (Na2O Equivalent)

Cement Autoclave Expansion:

0.01

Date Sample Tested:

12/04/19

Average Length Change (%):

0.01 % @ 28 days *

Gregory P. Allen Laboratory Director

Figure A.13 Genshaft Honors College certification data submittal page 8.

^{*}According to appendix X1.1 these aggregates have a low risk of deleterious expansion

2550 SUCCESS DR. • ODESSA, FLORIDA 33556 • (727)375-0388 • Fax (727)375-0358

TEST REPORT

A & S Project Number: 335486

Customer: Vulcan Materials

Location: Tampa Yard

Project Number: N/A

Attention: James Farmer

The results of tests performed in accordance with ASTM C1260-14 Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method) are as follows:

Aggregate: #89 Stone

Cement: Argos Newberry Plant Portland Cement Type –IL (10)

Cement Percent Alkalis: 0.40 % (Na2O Equivalent)

Cement Autoclave Expansion: 0.0

Date Sample Tested: 12/04/19

Average Length Change (%): 0.02 % @ 28 days *

Gregor∮ P.Állen Laboratory Director

Figure A.14 Genshaft Honors College certification data submittal page 9.

^{*}According to appendix X1.1 these aggregates have a low risk of deleterious expansion

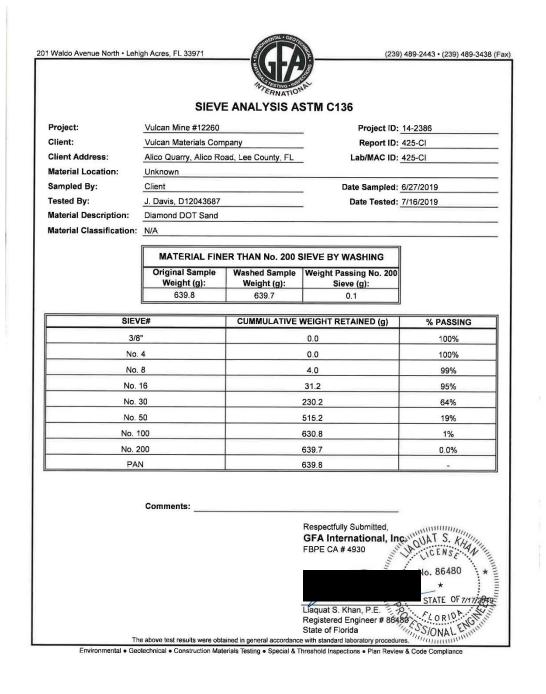


Figure A.15 Genshaft Honors College certification data submittal page 10.

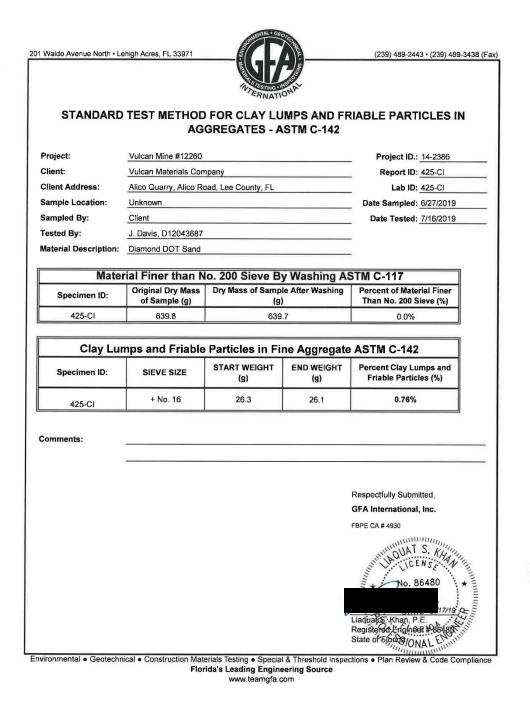
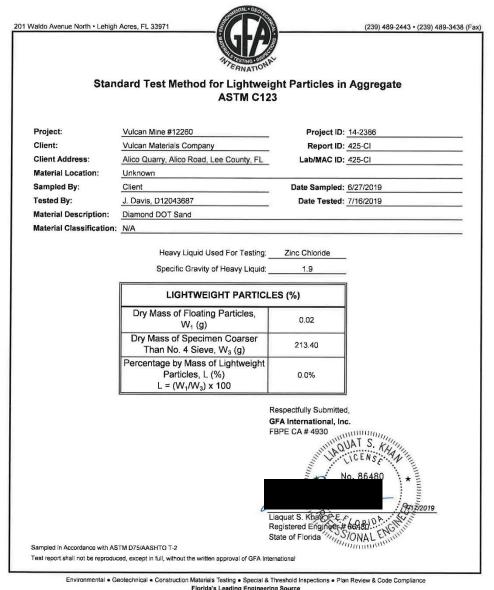



Figure A.16 Genshaft Honors College certification data submittal page 11.

Florida's Leading Engineering Source www.tearngfa.com

Figure A.17 Genshaft Honors College certification data submittal page 12.

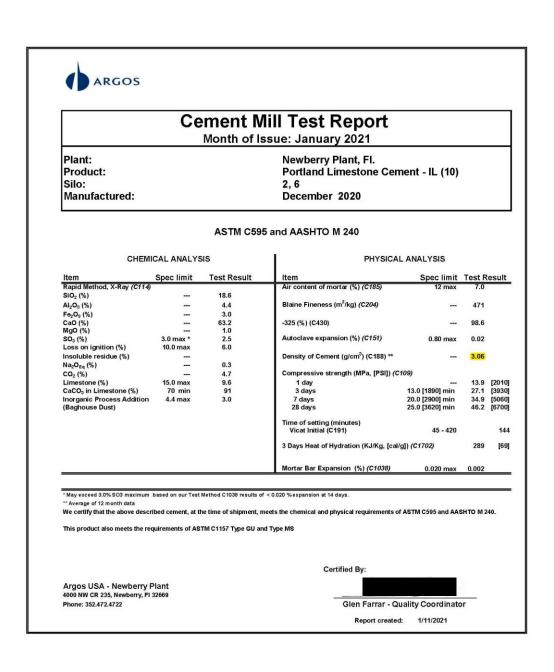


Figure A.18 Genshaft Honors College certification data submittal page 13.

TYPE IL PORTLAND LIMESTONE CEMENT

For Ready Mix Concrete Use

Argos Type IL portland limestone cement (PLC) is a blended hydraulic cement with up to 15 percent limestone.

It is manufactured with the same materials, additives, equipment, and quality control/quality assurance measures as our Type I/II cement and is manufactured to produce equivalent performance. This facilitates the IL PLC use as a one-to-one substitution for Type I/II company

Argos recommends that Type IL PLC cement be used at equal substitution on all ready mix concrete projects allowing use of Type I or Type II cement in S1 exposure class as defined in ACI 318-14.

CONCRETE PERFORMANCE

The table below compares three mixes, each with Type I/II or Type IL cement and with water adjusted to constant slump.

		4000 psi		4000 psi fly ash mix		4000 psi ternary mix	
Parameter	Units	Type I/II	Type IL	Type I/II	Type IL	Type I/II	Type IL
Cement	lb/cy	550	550	440	440	275	275
Fly ash	lb/cy			110	110	110	110
Slag	lb/cy					165	165
Water	gal/cy	35	35	34	34	35	35
Water Reducer	oz/cwt	4	4	4	4	4	4
Slump	ìn	4.5	4.25	4	4.75	4	4.5
Air		1.9	2.2	1.6	1.2	1.5	1.3
1-day strength	psì	2430	2430	1910	1740	1260	1410
3-day strength	psì	4020	3940	3230	3180	2660	2920
7-day strength	psì	4510	4440	3670	3700	3590	3650
28-day strength	psì	5860	5880	5430	5360	6160	6170

Note: Cernent and water weights adjusted to proper yield. No retarder used.

LIMITED WARRANTY

Argos warrants that Argos IL PLC Cement meets the requirements of American Association of State Highway and Transportation Officials (AASHTO) M 240, ASTM C595 and ASTM C1157. Argos makes no other warranty, whether of merchantability or fitness for a particular purpose, with respect to Argos IL PLC Cement.

www.argos-us.com

Figure A.19 Genshaft Honors College certification data submittal page 14.

SULFATE EXPOSURE

Argos Type IL PLC cement meets the requirements for ASTM C595 and C1157 Type MS, and has been shown to meet the requirements of the American Concrete Institute (ACI) 318-14 for S1 exposure class.

- 0.03% expansion at 180-day with 22% ash for ASTM C1012.
- 0.06% expansion at 180 test-day for ASTM C1012 (see ACI 318-14 Table 19.3.2.1 Footnote 3).

APPROVALS

Argos IL PLC exceeds AASHTO M240 and ASTM C595 for Type IL and is approved by the Department of Transportation of certain states. It also meets the requirements of ASTM C1157. The use of this cement type is allowed in the following codes and specifications:

- · Certain building codes, including Florida
- ACI 301-15 Specifications for Structural Concrete
- ACI 318-14 Building Code Requirements for Structural Concrete
- ACI 350.5-12 Specifications for Environmental Concrete Structures
- ASTM C94 Standard Specification for Ready Mixed Concrete

HEAT OF HYDRATION AND FINENESS

Heat generation and strength gain are equivalent in Argos Type IL PLC and I/II MH cements. Type IL PLC cement has higher fineness than Type I/II cement as measured by the Blaine Test (ASTM C204). However, limestone creates a "false Blaine" since it is easier to grind and not representative of the true clinker fineness.

CEMENT PROPERTIES

*Data is from June 2017

Parameter	Method	Units	Type I/II	Type IL*
1-day strength	C109	psi	2090	2560
3-day strength	C109	psi	3670	4430
7-day strength	C109	psi	5020	5760
28-day strength	C109	psi	7130	7640
Percent limestone	*	%	4	10
CaCO ₃ in limestone	C114	%	91	92
Fineness (Blaine)	C204	m²/kg	386	500
Fineness (#325 residue)	C430	%	4.4	1.4
Loss on ignition	C114	%	2.7	6.3
SO ₂		%	3.1	3.6
Equivalent alkalies, as Na,O		%	0.29	0.32
Setting time, initial (Vicat)	C191	Min	112	125
Air content in mortar	C185	%	4.3	3.0
Heat of hydration, three days	C1702	cal/g	66	68

PRECAUTIONS

upon request.

Direct contact with wet cement should be avoided. If contact occurs, the skin should be washed with water as soon as possible. Exposure can cause serious injury, including potentially irreversible chemical (caustic) burns. If cement enters the eyes, immediately rinse thoroughly with water and seek medical attention. For more information, reference the applicable Argos Safety Data Sheet (SDS), which should be consulted prior

to use of this product and is available

For product use and availability, contact your Argos sales representative or our Customer Value Center (CVC) at 800-331-0022 or cement-services@argos-us.com.

www.argos-us.com

Figure A.20 Genshaft Honors College certification data submittal page 15.

MILL TEST REPORT

January 2021

Month of Issue: Plant: Product: Tampa Plant SuperCem (Slag Cement, ASTM C989 Grade 120), SLAG01 20, 22, 23, 25 December 2020 Silos

Chemical Analysis	Results	ASTM C989 Specifications Grade 120
Aluminum Oxide (as Al ₂ O ₃), %	13.8	A
Equivalent Alkalies (Na ₂ O + 0.658 K ₂ O), %	0.34	A
Sulfide Sulfur (S), %	0.7	2.5 max.
Sulfate Sulfur (as SO ₃), %	1.1	A
Chloride (CI), %	0.001	A

Physical Analysis	Results	ASTM C989 Specifications Grade 120
Compressive Strength [®]		
7 Day (psi)	3150	A
28 Day (psi) ^c	6320	A A
Slag Activity Index, %		
7 Day	80	A
28 Day ^c	117	115 min
Fineness		
Blaine (m²/kg)	529	A
45 micron (% retained)	1.1	20 max
Air Content, %	3	12 max
Test Method C1038/C1038M Mortar Bar	0.013	0.020 max
Expansion, 14 day, %		
Density	2.85	A

⁴ Not applicable

The cement covered by this report complies with the current specifications for: ASTM G989 - 18: Grade 120 Slag Cement FDOT Section 929 and ASHTO M302 Ground Granulated Blast Furnace Slag (GGBFS) TNDOT, NCDOT, MDSHA, DEDOT, DCDOT, and VDOT: Grade 120 Slag Cement

Figure A.21 Genshaft Honors College certification data submittal page 16.

⁸ Reference cement chemical and physical data furnished upon request

c Reflects previous month's data

Tampa Yard 10645/TM858 3510 Pendola Point Road Tampa, FL 33619 813-248-8818

12/16/2020

To Whom it may concern:

Our #57 material is currently produced at our Sac Tun Quarry (origin #OMX-001), and shipped to our Tampa Sales Yard (FDOT mine #10-645) and certified using the "full QC Certification System" as outlined in Chapter 14 of the Aggregate Rule (14-103 F.A.C). It meets all current requirements of section 901 of the F.D.O.T. Standard Specification of Road and Bridge Construction as well as the requirements of ASTM C33. Each load is certified by individual ticket or bill of lading.

25291-Certified #57 (FDOT Code 10)

Procedure	Sieve/Test	Average	Unit	Certified #57
	1 1/2" (37.5mm)	100.0	%	100-100
	1" (25mm)	97.4	%	95-100
	3/4" (19mm)	82.9	%	
	1/2" (12.5mm)	41.9	%	25-60
	3/8" (9.5mm)	23.8	%	
	#3 1/2 (5.6mm)	8.4	%	
	#4 (4.75mm)	4.9	%	0-10
	#8 (2.36mm)	2.1	%	0-5
l a	FM	6.84		**************************************
	-#200 (75um)	1.02	%	0.00-1.75
	Absorption	3.51	%	
	SPGR (Dry,Gsb)	2.316		
	SPGR (SSD)	2.397		
	SPGR (Apparent,Gsa)	2.520		

Sincerely,

Richard Wood Technical Services Supervisor Vuclan Materials Company 863-287-9192

Figure A.22 Genshaft Honors College certification data submittal page 17.

Diamond Sand Mine 16659 205 Story Rd. Lake Wales, FL 33853

12/16/2020

To our valued customer,

This material is currently produced at our Diamond Sand mine and certified using the "full QC Certification System" as outlined in chapter 14 of the Aggregate Rule (14-103 F.A.C.). It meets all current requirements of section 902 of the F.D.O.T Standard Specification for Road and Bridge Construction as well as the requirements of ASTM C33. Each load is certified by an individual ticket or bill of lading.

31162-CONCRETE SAND (FDOT F01)

Procedure	Sieve/Test	Average	Unit	FLDOT Silica Sand
T 27/C 136	#4 (4.75mm)	100.0	%	95-100
	#8 (2.36mm)	99.5	%	85-100
	#16 (1.18mm)	95.1	%	65-97
	#30 (.6mm)	61.5	%	25-70
	#50 (.3mm)	25.3	%	5-35
	#100 (.15mm)	4.4	%	0-7
	#200 (75µm)	0.04	%	0-4
	FM	2.14		1.96-2.36
	-#200 (75um)	0.10	%	0.00-4.00
	Absorption	0.24	%	
	SPGR (Dry,Gsb)	2.639		
	SPGR (SSD)	2.646		
	SPGR (Apparent,Gsa)	2.656		

Sincerely,

Jim Farmer Technical Services Manager Vuclan Materials Company 863-287-9192

Figure A.23 Genshaft Honors College certification data submittal page 18.

GCP Applied Technologies 62 Whittemore Avenue Cambridge MA 02140

gcpat.com

SCC Customer Service: 1-877- 423-6491

Pete Hallberg Argos Ready Mix 5920 W. Linebaugh Avenue Tampa, Florida 33624 Project Name: Various Projects

March 11, 2019

This is to certify that **ADVA® Cast 600**, a **High Range Water Reducers**, as manufactured and supplied by GCP Applied Technologies Inc., is formulated to comply with the Specifications for Chemical Admixtures for Concrete, ASTM: **C494 Type A, F and ASTM C1017**, AASHTO: **M194, Type A, F**.

ADVA® Cast 600 does not contain calcium chloride or chloride containing compounds as a functional ingredient. Chloride ions may be present in trace amounts contributed from the process water used in manufacturing.

A construction products technologies company

Figure A.24 Genshaft Honors College certification data submittal page 19.

ADVA® Cast 600

High-range water-reducing admixture -- ASTM C494 Type A and F and ASTM C1017 Type I

Product Description

ADVA® Cast 600 is a polycarboxylate based high-range water reducer designed for the production of conventional and Self Consolidating Concrete. ADVA® Cast 600 is formulated to provide extended slump life along with excellent workability without segregation.

ADVA® Cast 600 is supplied as a ready to use liquid that weighs approximately 8.9 lbs/gal (1.1 kg/L). ADVA ® Cast 600 does not contain intentionally added chlorides.

Product Advantages

- Excellent moisture and air control
- Extended slump retention up to one hour
- Enhanced concrete cohesiveness with low viscosity for rapid placement
- Superior finish on cast surfaces
- Excellent early and later age compressive strength

Uses

ADVA® Cast 600 is a plant added superplasticizer that is formulated to impart improved workability to concrete over an extended period of time while still achieving high early age compressive strength. ADVA® Cast 600 can be used for the production of Self Consolidating Concrete (SCC) in precast/prestressed applications and may also be used in conventional concrete production.

ADVA® Cast 600 may be used to produce concrete in applications with very low water/cementitious ratios, where concrete stability and improved tolerance to material variability are required, while maintaining high levels of workability over long periods of time.

Addition Rates

ADVA® Cast 600 is an easy to dispense liquid admixture. Dosage rates can be adjusted to meet a wide spectrum of concrete performance requirements. Addition rates for ADVA® Cast 600 can vary from 2 to 10 fl oz/100 lbs (130 to 650 mL/100 kg) with the type of application, but will typically range from 3 to 6 fl oz/100 lbs (200 to 390 mL/100 kg) of cementitious. Should conditions require using more than the recommended addition rate, please consult your GCP Applied Technologies representative.

Mix proportions, cementitious content, aggregate gradations and ambient conditions will affect ADVA ® Cast 600 dosage requirements. If materials or conditions require using more than the recommended addition rates, or when developing mix designs for Self Consolidating Concrete please consult your GCP Applied Technologies representative for more information and assistance.

Page 1 of 3

Figure A.25 Genshaft Honors College certification data submittal page 20.

Compatibility with Other Admixtures and Batch Sequencing

ADVA® Cast 600 is compatible with most GCP admixtures as long as they are added separately to the concrete mix. However, ADVA® products are not recommended for use in concrete containing naphthalene based admixtures including DARACEM® 19 and DARACEM® 100 and melamine based admixtures including DARACEM® 65. In general, it is recommended that ADVA® Cast 600 be added to the concrete mix near the end of the batch sequence for optimum performance. Different sequencing may be used if local testing shows better performance. Please see GCP Technical Bulletin TB-0110, Admixture Dispenser Discharge Line Location and Sequencing for Concrete Batching Operations for further recommendations.

Pretesting of the concrete mix should be performed before use and as conditions and materials change in order to assure compatibility with other admixtures, and to optimize dosage rates, addition times in the batch sequencing and concrete performance. For concrete that requires air entrainment, the use of an ASTM C260 air entraining agent (such as DARAVAIR®, DAREX®, or AIRALON® 3000 product lines) is recommended to provide suitable air void parameters for freeze thaw resistance. Please consult your GCP Applied Technologies representative for guidance.

Packaging & Handling

ADVA® Cast 600 is available in bulk, delivered by metered trucks, in totes and drums. ADVA® Cast 600 will freeze at approximately 32°F (0°C) but will return to full functionality after thawing and thorough mechanical agitation.

Dispensing Equipment

A complete line of accurate, automatic dispensing equipment is available.

Page 2 of :

Figure A.26 Genshaft Honors College certification data submittal page 21.

gcpat.com | North America Customer Service: 1 877-4AD-MIX1 (1 877-423-6491)

We hope the information here will be helpful. It is based on data and knowledge considered to be true and accurate, and is offered for consideration, investigation and verification by the user, but we do not warrant the results to be obtained. Please read all statements, recommendations, and suggestions in conjunction with our conditions of sale, which apply to all goods supplied by us. No statement, recommendation, or suggestion is intended for any use that would infringe any patent, copyright, or other third party right.

ADVA, AIRALON, DAREX, DARACEM, and DARAVAIR are registered trademarks, which may be registered in the United States and/or other countries, of GCP Applied Technologies, Inc. This trademark list has been compiled using available published information as of the publication date and may not accurately reflect current trademark ownership or status.

© Copyright 2018 GCP Applied Technologies, Inc.

All rights reserved. GCP Applied Technologies Inc., 62 Whittemore Avenue, Cambridge, MA 02140, USA
This document is only current as of the last updated date stated below and is valid only for use in the United States. It is important
that you always refer to the currently available information at the URL below to provide the most current product information at the
time of use. Additional literature such as Contractor Manuals, Technical Bulletins, Detail Drawings and detailing recommendations
and other relevant documents are also available on www.gcpat.com. Information found on other websites must not be relied upon, as
they may not be up-to-date or applicable to the conditions in your location and we do not accept any responsibility for their content.
If there are any conflicts or if you need more information, please contact GCP Customer Service.

Last Updated: 2018-08-24 gcpat.com/solutions/products/adva-cast-high-range-water-reducers/adva-cast-600

gcp applied technologies

Page 3 of 3

Figure A.27 Genshaft Honors College certification data submittal page 22.

GCP Applied Technologies Inc. 62 Whittemore Avenue Cambridge, MA 02140-1692 T 617-876-1400 gcpat.com/construction

Date: 1/21/2018

Pete Hallberg Argos Ready Mix 5920 West Linebaugh Avenue Tampa, FLORIDA 34624

Project Name: Various Projects
Product Selected: Darex® AEA

This is to certify that **Darex AEA**, a **Air Entraining Agent**, as manufactured and supplied by GCP Applied Technologies Inc., is formulated to comply with the Specifications for Chemical Admixtures for Concrete, ASTM: **C260**, AASHTO: **M154**.

Darex AEA does not contain calcium chloride or chloride containing compounds as a functional ingredient. Chloride ions may be present in trace amounts contributed from the process water used in manufacturing.

Robert J. Hoopes
Product Development Engineer

Figure A.28 Genshaft Honors College certification data submittal page 23.

DAREX® AEA

Air-entraining admixture ASTM C260

Product Description

DAREX® AEA admixture is an aqueous solution of a complex mixture of organic acid salts. DAREX® AEA is specially formulated for use as an air–entraining admixture for concrete and is manufactured under rigid control which provides uniform, predictable performance. It is supplied ready–to–use and does not require pre–mixing with water. One gallon weighs approximately 8.5 lbs (1.02 kg/L).

Product Advantage

- Economical air entrainer is suitable for improving workability of harsh mixes
- Can be used in wide spectrum of mix designs

Uses

DAREX® AEA is used in ready-mix and concrete products plants. It is also used on the job with job site mixers and highway pavers— wherever concrete is mixed and there is a need for purposeful air entrainment.

Because DAREX® AEA imparts workability to the mix, it is particularly effective with slag, lightweight, or manufactured aggregates which tend to produce harsh concrete. It also makes possible the use of natural sand deficients in fines.

Performance

Air is entrained by the development of a semi-microscopic bubble system, introduced into the mix by agitation and stabilized by DAREX® AEA in the mortar phase of the concrete.

Workability is improved

Millions of tiny air bubbles entrained with DAREX ® AEA act as flexible ball bearings, lubricating and plasticizing the concrete mix. This permits a reduction in mixing water with no loss in slump. Placeability is improved—bleeding and segregation are minimized.

Durability is increased

DAREX® AEA concrete is extremely durable, particularly when subjected to freezing and thawing. It has resistance to frost and de-icing salts, as well as to sulfate, sea and alkaline waters.

Page 1 of 3

Figure A.29 Genshaft Honors College certification data submittal page 24.

Addition Rates

There is no standard addition rate for DAREX® AEA. The amount to be used will depend upon the amount of air required under job conditions, usually in the range of 4% to 8%. Typical factors which might influence the amount of air entrained are temperature, cement, sand gradation and use of extra fine materials such as fly ash. Typical DAREX® AEA addition rates range from ½ to 3 fl oz/100 lbs (30 to 200 mL/100 kg) of cement.

The air–entraining efficiency of DAREX® AEA becomes even greater when used with water–reducing and set–retarding agents. This may allow a reduction of up to ¾ in the amount of DAREX® AEA required for the specified air content.

Concrete Mix Adjustment

Entrained air will increase the volume of the concrete making it necessary to adjust the mix proportions to maintain the cement factor and yield. This may be accomplished by a reduction in water requirement and aggregate content.

Compatibility with Other Admixtures and Batch Sequencing

DAREX® AEA is compatible with most GCP admixtures as long as they are added separately to the concrete mix. In general, it is recommended that DAREX® AEA be added to the concrete mix near the beginning of the batch sequence for optimum performance, preferably by "dribbling" on the sand. Different sequencing may be used if local testing shows better performance. Please see GCP Technical Bulletin TB-0110, Admixture Dispenser Discharge Line Location and Sequencing for Concrete Batching Operations for further recommendations. DAREX® AEA should not come in contact with any other admixture before or during the batching process, even if diluted in mix water. DAREX® AEA should not be added directly to heated water.

DAREX® AEA is not recommended for use in concrete treated with naphthalene-based admixtures including DARACEM® 19 and DARACEM® 100, or melamine-based admixtures including DARACEM® 65.

Pretesting of the concrete mix should be performed before use, as conditions and materials change in order to assure compatibility, and to optimize dosage rates, addition times in the batch sequencing and concrete performance. Please consult your GCP Applied Technologies representative for guidance.

Packaging & Handling

DAREX® AEA is available in bulk, delivered in metered tank trucks, totes and drums.

DAREX® AEA will freeze at about 30 °F (-1 °C), but its air–entraining properties are completely restored by thawing and thorough mechanical agitation.

Dispensing Equipment

A complete line of automatic DAREX ® AEA dispensers is available. Accurate and simple, these dispensers are easily adapted to existing facilities on paving mixers and in batching plants.

Page 2 of 3

Figure A.30 Genshaft Honors College certification data submittal page 25.

Specifications

Concrete shall be air entrained concrete, containing 4% to 8% entrained air. The air contents in the concrete shall be determined by the pressure method (ASTM Designation C231) or gravimetric method (ASTM Designation C138). The air–entraining admixture shall be DAREX® AEA, as manufactured by GCP Applied Technologies, or equal. The air–entraining admixture shall be added at the concrete mixer or batching plant in such quantities as to give the specified air contents.

gcpat.com | North America Customer Service: 1 877-4AD-MIX1 (1 877-423-6491)

We hope the information here will be helpful. It is based on data and knowledge considered to be true and accurate, and is offered for consideration, investigation and verification by the user, but we do not warrant the results to be obtained. Please read all statements, recommendations, and suggestions in conjunction with our conditions of sale, which apply to all goods supplied by us. No statement, recommendation, or suggestion is intended for any use that would infringe any patent, copyright, or other third party right.

DAREX 15 is a trademark, which may be registered in the United States and/or other countries, of GCP Applied Technologies Inc. This trademark list has been compiled using available published information as of the publication date and may not accurately reflect current trademark ownership or status.

© Copyright 2018 GCP Applied Technologies Inc. All rights reserved.

GCP Applied Technologies Inc., 62 Whittemore Avenue, Cambridge, MA 02140 USA.

In Canada, GCP Canada, Inc., 294 Clements Road, West, Ajax, Ontario, Canada L15 3C6.

This document is only current as of the last updated date stated below and is valid only for use in the United States. It is important that you always refer to the currently available information at the URL below to provide the most current product information at the time of use. Additional literature such as Contractor Manuals, Technical Bulletins, Detail Drawings and eatiling recommendations and other relevant documents are also available on www.gcpat.com. Information found on other websites must not be relied upon, as they may not be up-to-date or applicable to the conditions in your location and we do not accept any responsibility for their content. If there are any conflicts or if you need more information, please contact GCP Customer Service.

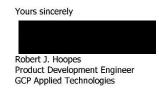
Last Updated: 2018-08-24 qcpat.com/solutions/products/darex-aea

Page 3 of 3

Figure A.31 Genshaft Honors College certification data submittal page 26.

GCP Applied Technologies 62 Whittemore Avenue Cambridge MA 02140

gcpat.com


SCC Customer Service: 1-877- 423-6491

Pete Hallberg Argos Ready Mix 5920 W. Linebaugh Avenue Tampa, Florida 33624 Project Name: Various Projects

March 11, 2019

This is to certify that **Recover®**, a **Retarders**, as manufactured and supplied by GCP Applied Technologies Inc., is formulated to comply with the Specifications for Chemical Admixtures for Concrete, ASTM: **C494**, **Type D**, AASHTO: **M154**, **Type D**.

Recover® does not contain calcium chloride or chloride containing compounds as a functional ingredient. Chloride ions may be present in trace amounts contributed from the process water used in manufacturing.

A construction products technologies company

Figure A.32 Genshaft Honors College certification data submittal page 27.

RECOVER®

Hydration stabilizer ASTM C494 Type B and D

Product Description

RECOVER® is a ready-to-use aqueous solution of chemical compounds specifically designed to stabilize the hydration of Portland cement concretes. The ingredients are factory pre-mixed in exact proportions under strict quality control to provide uniform results. One gallon weighs approximately 9.6 lbs (1.15 kg/L).

Product Advantages

- Eliminates the need to discharge wash water from the mixer
- Prevents the waste of unused concrete
- Provides predictable extended set for continuous placement on mass concrete and tremie projects, or on long hauls to remote sites

Uses

RECOVER® is used to stabilize mixer wash water and returned or leftover concrete for extended periods, allowing for use of the materials when specified or allowed. It is also used where controlled extended set of concrete is needed. It is the concrete user's responsibility to determine if leftover, returned or extended-set concrete is specified or allowed.

Wash Water

For wash water applications, RECOVER ® is used to eliminate the need to discharge wash water from the mixer. This allows the wash water to be used as mix water in the next batch of concrete produced and prevents the residual plastic concrete from hardening. Stabilization of up to 96 hours is possible depending on dosage rate.

Returned Concrete

For returned or leftover concrete, RECOVER ® is used to prevent plastic concrete from reaching initial set. This allows the concrete to be stored in a plastic state and then used when specified or allowed. The use of this concrete may require the addition of freshly batched concrete and/or an accelerator such as DARACCEL ® or POLARSET®.

Stabilization of concrete for up to 96 hours is possible depending on dosage rate. Use prevents the waste of unused concrete.

Set Time Control

RECOVER® is also used in situations where a controlled set time extension is required. Examples include: extended hauls, large continuous pours or pre-batching of concrete for later use.

Page 1 of 3

Figure A.33 Genshaft Honors College certification data submittal page 28

Addition Rates

Addition rates of RECOVER® for wash water range from 6 to 128 fl oz (180 to 3800 mL) per treatment. The amount used will depend on the specific materials involved, mixer type and stabilization period. Addition rates for returned or leftover concrete will range from 3 to 128 fl oz/100 lbs (195 to 8350 mL/100 kg) of cement. The amount used will depend on the specific materials involved, concrete age, temperature conditions and stabilization period. For applications requiring set time extensions well in excess of 4 hours, RECOVER® may be used at addition ranges from 5 to 50 oz/100 lbs (325 to 3260 mL/100 kg) of cement. For use as a traditional ASTM Type B or D retarder, RECOVER® may be used at addition rates of 2 to 6 oz/100 lbs (130 to 390 mL/100 kg) of cement. Proper dosage rate selection can only be achieved through pretesting. Consult your local GCP Applied Technologies admixture representative.

Compatibility with Other Admixtures and Batch Sequencing

RECOVER® is compatible with most GCP admixtures as long as it is added separately to the concrete mix, usually through the water holding tank discharge line. In general, it is recommended that RECOVER® be added to the concrete mix near the end of the batch sequence for optimum performance. Different sequencing may be used if local testing shows better performance. Please see GCP Technical Bulletin TB-0110, Admixture Dispenser Discharge Line Location and Sequencing for Concrete Batching Operations for further recommendations.

Pretesting of the concrete mix should be performed before use, as conditions and materials change in order to ensure compatibility, and to optimize dosage rates, addition times in the batch sequencing and concrete performance. For concrete that requires air entrainment, the use of an ASTM C260 air entraining agent (such as Daravair® or Darex® product lines) is recommended to provide suitable air void parameters for freeze—thaw resistance. Please consult your GCP Applied Technologies representative for guidance.

Packaging & Handling

RECOVER® is available in bulk, delivered by metered tank trucks, totes and drums.

 ${\tt RECOVER} @ \ will \ freeze, but \ will \ return \ to \ full \ effectiveness \ after \ thawing \ and \ thorough \ mechanical \ agitation.$

Performance

RECOVER® stabilizes the hydration process of Portland cement preventing it from reaching initial set. This stabilization is not permanent and is controlled by dosage rate. For wash water, the RECOVER® treated water is mixed or sprayed in a specific manner to thoroughly coat the interior of the mixer. The water is used as mix water in the next batch of concrete produced, which then scours the unhardened material from the interior of the mixer. Stabilization of returned or leftover concrete with RECOVER® maintains the plasticity of the concrete for the desired storage duration. This stabilized concrete then resumes normal hydration when the RECOVER® dosage effects subside, or when it is activated by the addition of fresh concrete and/or an accelerator. The result can be concrete with normal plastic and hardened properties.

Page 2 of 3

Figure A.34 Genshaft Honors College certification data submittal page 29.

Dispensing Equipment

A complete line of GCP dispensing equipment is available for RECOVER $^{\circledR}$. This includes the Reach 360TM System which uses an innovative spray wand technology to simplify wash water procedures.

gcpat.com | North America Customer Service: 1 877-4AD-MIX1 (1 877-423-6491)

We hope the information here will be helpful. It is based on data and knowledge considered to be true and accurate, and is offered for consideration, investigation and verification by the user, but we do not warrant the results to be obtained. Please read all statements, recommendations, and suggestions in conjunction with our conditions of sale, which apply to all goods supplied by us. No statement, recommendation, or suggestion is intended for any use that would infringe any patent, copyright, or other third party right.

RECOVER, DARACCEL, POLARSET, DARAVAIR and DAREX are trademarks, which may be registered in the United States and/or other countries, of GCP Applied Technologies Inc. This trademark list has been compiled using available published information as of the publication date and may not accurately reflect current trademark ownership or status.

© Copyright 2018 GCP Applied Technologies Inc. All rights reserved.

GCP Applied Technologies Inc., 62 Whittemore Avenue, Cambridge, MA 02140 USA.

In Canada, 294 Clements Road, West, Ajax, Ontario, Canada L1S 3C6.

This document is only current as of the last updated date stated below and is valid only for use in the United States. It is important that you always refer to the currently available information at the URL below to provide the most current product information at the time of use. Additional literature such as Contractor Manuals, Technical Bulletins, Detail Drawings and detailing recommendations and other relevant documents are also available on www.gcpat.com. Information found on other websites must not be relied upon, as they may not be up-to-date or applicable to the conditions in your location and we do not accept any responsibility for their content. If there are any conflicts or if you need more information, please contact GCP Customer Service.

Last Updated: 2018-08-24 gcpat.com/solutions/products/recover

Page 3 of 3

Figure A.35 Genshaft Honors College certification data submittal page 30.

1. IDENTIFICATION

Product Identifier Ready Mix Concrete (Concrete)

Synonyms: Ready Mix Concrete, Concrete Ready Mix, Portland Cement Concrete, Ready Mix Stucco, Ready Mix grout, Ready Mix, Concrete, Freshly Mixed Concrete, Collodial Concrete, Permeable

Concrete, Shotcrete, Gunite, Polymer-Portland Cement Concrete, Colored Concrete, Flowable Fill, Roller-Compacted Concrete, Fiber Reinforced Concrete, Includes Florida Super n Sand Stucco Mix

and Florida Super n Sand Masonry Mortar Mix.

Intended use of the Cement is used as a binder in concrete and mortars that are widely used in construction. Cement is

product: distributed in bags, totes and bulk shipment.

Contact: Argos Cement

3015 Windward Plaza Suite 300 Alpharetta, GA 30005 mheaton@argos-us.com

Contact Person: Michael J. Heaton

Contact Information: CHEMTREC EMERGENCY TELEPHONE NUMBER (24 hrs): (800)424-9300

COMPANY CONTACT (business hours): (678)368-4300 (8 AM-4 PM EST)

2. HAZARD IDENTIFICATION

According to OSHA 29 CFR 1910.1200 HCS

Classification of the Substance or Mixture

Classification (GHS-US): Skin Corrosion/Irritation Category 1C H314 Skin Sensitization H317 Category 1 Serious Eye Damage/Eye Irritation H318 Category 1 STOT SE Category 3 H335 Carcinogenicity STOT RE Category 1A H350 Category 1 H372

Labeling Elements

Signal Word (GHS-US) : Danger

Hazard Statements (GHS-US): H314 – Causes severe skin burns and eye damage.

H317 - May cause an allergic skin reaction.

H318 – Causes serious eye damage.

 ${\bf H335-May}\ cause\ respiratory\ irritation.$

H350 - May cause cancer.

H372 – Causes damage to lung through prolonged or repeated exposure inhalation.

Page 1 of 14 May 2015

Figure A.36 Genshaft Honors College certification data submittal page 31.

Precautionary Statements (GHS-US) :

P201 - Obtain special instructions before use. Prevention

P202 - Do not handle until all safety precautions have been read and understood.

P260 - Do not breathe dust/fume/gas/mist/vapors/spray.

 ${\bf P264-Wash\ thoroughly\ after\ handling.}$

P270 - Do not eat, drink or smoke when using this product.

P271 – Use only outdoors or in a well-ventilated area.

P272 - Contaminated work clothing should not be allowed out of the workplace.

P280 - Wear protective gloves.

P301+P330+P331 - IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. Response ${\tt P3O3+P361+P353-IF\ ON\ SKIN\ (or\ hair): Take\ off\ immediately\ all\ contaminated}$

clothing. Rinse skin with water/shower.

P304+P340: IF INHALED: Remove person to fresh air and keep comfortable for

breathing. P305+P351+P338 – IF IN EYES: Rinse cautiously with water for several minutes.

Remove contact lenses, if present and easy to do. Continue rinsing. P308+P313 - If exposed or concerned: Get medical attention/advice.

P310 – Immediately call a POISON CENTER/Doctor.

P333+P313 - If skin irritation or a rash occurs: Get medical advice/attention.

P363 – Wash contaminated clothing before reuse.

P403+P233 - Store in a well-ventilated place. Keep container tightly closed. Storage

P501- Dispose of contents/container in accordance with

local/regional/national/international regulations.

Hazards Not Otherwise Classified: None

3. COMPOSITION / INFORMATION ON INGREDIENTS

Chemical Composition Information

Disposal

Name	Product Identifier (Cas#)	% (w/w)	Classification
Limestone	1317-65-3	20-65	Not Classified
Quartz	14808-60-7	0-90	Carcinogenicity 1A, H350 STOT RE 1, H372
Calcium Hydroxide	1305-62-0	15-25	Skin Irritant 2, H315 Serious Damage Eye 1, H318
Portland Cement	65997-15-1	10-30	Skin Corrosive 1C, H314 Serious Damage Eye 1, H318 Skin Sensitization 1, H317 STOT SE 3, H335
Fly Ash	68131-74-8	0-20	Not Classified
Calcium Oxide	1305-78-8	0-5	Skin Corrosive 1, H314 Serious Damage Eye 1, H318 STOT SE 3, H335
Magnesium oxide	1309-48-4	0-4	Skin Irritant 3 H316 Eye Irritant 2, H320 STOT SE 3, H335
Calcium sulfate dihydrate	133397-24-5	0-2	Not Classified

The exact percentage (concentration) of the composition has been withheld as proprietary.

Page 2 of 14 May 2015

Figure A.37 Genshaft Honors College certification data submittal page 32.

4. FIRST AID MEASURES

Route	Measures
Inhalation	Inhalation of wet product not foreseeable route of exposure. If dust from the material is inhaled, remove victim to fresh air and keep at rest in a position comfortable for breathing, if the individual is not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial respiration. It may be decoust to the person providing aid to give mouth-to-mouth resuscitation. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway, Inhalation of large amounts of Portland cement requires immediate medical attention. Call a poison center or physician.
Ingestion	Never give anything by mouth to an unconscious person. Do not induce vomiting. Rinse mouth with water and afterwards drink plenty of water. Get immediate medical attention.
Eye Contact	In case of contact get medical attention immediately. Call a poison center or physician. Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Continue to rinse for at least 30 minutes. Chemical burns must be treated promptly by a physician.
Skin Contact	Wash off with plenty of water. Remove contaminated clothing and shoes. Launder contaminated clothing before reuse. If skin irritation or rash occurs: Get medical advice/attention.
Absorption	As with skin contact, remove contaminated clothing and flush with copious amounts of water. Flush affected area for at least 15 minutes to minimize potential for further absorption. Seek medical attention if significant portions of skin have been exposed.

Most Important Symptoms

May cause skin burns. May cause serious eye damage. May cause allergic skin reaction. Carcinogen; breathing crystalline silica can cause lung disease, including silicosis and lung cancer. Crystalline silica has also been associated with scleroderma and kidney disease. May cause respiratory irritation. May cause damage to lung through prolonged repeated exposure.

Indication of any immediate medical attention and special treatment needed

Note to physician: Treat symptomatically. Contact poison treatment specialist immediately if large quantities have been ingested or inhaled.

5. FIRE-FIGHTING MEASURES

Flammable Properties

This product is not flammable or combustible.

Extinguishing Media

Use an extinguishing agent suitable for the surrounding fire.

Specific Hazards / Products of Combustion

No specific fire or explosion hazard.

Special Precautions and Protective Equipment for Firefighters

Move containers from fire area if this can be done without risk. Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.

See Section 9 for fire properties of this chemical including flash point, autoignition temperature, and explosive limits

6. ACCIDENTAL RELEASE MEASURES

Personal Precautions

rersonal recausions
Keep unnecessary personnel away. Wear appropriate protective equipment and dothing during clean-up. Avoid inhalation of dust from the spilled material. Use a NIOSH/MSHA approved respirator if there is a risk of exposure to dust at levels exceeding the exposure limits. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. See Section 8 for additional information.

Page 3 of 14 May 2015

Figure A.38 Genshaft Honors College certification data submittal page 33.

Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if reportable thresholds have entered the environment, including waterways, soil or air. Materials can enter waterways through drainage systems.

Containment and Clean-Up Methods
Scrape wet cement and place in container. Allow material to dry or solidify before disposal. Do not wash down sewage or drainage systems or into bodies of water.

7. HANDLING AND STORAGE

Handling Precautions

Avoid contact with eyes, skin, or clothing. This product contains quartz, which may become airborne without a visible cloud. Avoid breathing dust. Avoid creating dusty conditions. Use only with adequate ventilation to keep exposure below recommended exposure limits. Put on appropriate personal protective equipment (see Section 8). Persons with a history of skin sensitization problems should not be employed in any process in which this product is used. Avoid exposure by obtaining and following special instructions before use. Do not handle until all safety precautions have been read and understood. Keep in the original container or an approved alternative made from a compatible material and keep the container tightly closed when not in use. Empty containers retain product residue and can be hazardous. Do not reuse container.

Use care in handling/storage. Store in tightly closed original container in a well-ventilated place. Keep away from food, drink and animal feeding stuffs. Store in accordance with local/regional/national/international regulation. Keep out of reach of

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Occupational Exposure Limits US. ACGIH Threshold Limit Values Components Type Value Form Calcium Hydroxide: TWA 5 mg/m3 (CAS# 1305-62-0) . Caldium oxide: TWA 2 mg/m3 (CAS# 1305-78-8) . Calcium sulfate dihydrate: TWA 10 mg/m3 Inhalable fraction. (CAS# 13397-24-5) Magnesium oxide: TWA 10 mg/m3 Inhalable fraction. (CAS# 1309-48-4) Portland cement TWA 1 mg/m3 Respirable fraction. (CAS# 65997-15-1) Quartz: TWA 0.025 mg/m3 Respirable fraction. (CAS# 14808-60-7)

US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000)

Components Type Value Form
Calcium Hydroxide: PEL 5 mg/m3 Respirable fraction. (CAS# 1305-62-0) Caldium oxide: PEL 5 mg/m3 (CAS# 1305-78-8) (CAS# 13397-24-5) Limestone: PEL 5 mg/m3 Respirable fraction 15 mg/m3 Total dust. (CAS# 1317-65-3) Magnesium oxide: PEL 15 mg/m3 Total particulate. (CAS# 1309-48-4) Portland cement: PEL 5 mg/m3 Respirable fraction 15 mg/m3 Total dust. (CAS# 65997-15-1)

Page 4 of 14 May 2015

Figure A.39 Genshaft Honors College certification data submittal page 34.

May 2015

```
US. OSHA Table Z-3 (29 CFR 1910.1000)
Components Type Value Form
Portland cement: TWA 50 mopof
(CAS# 65997-15-1)
Quartz: TWA 0.3 mg/m3 Total dust, 0.1 mg/m3 Respirable, 2.4 mppcf Respirable.
(CAS# 14808-60-7)
Canada. Alberta OELs (Occupational Health & Safety Code, Schedule 1, Table 2)
Components Type Value Form
Calcium Hydroxide: TWA 5 mg/m3
(CAS# 1305-62-0)
.
Calcium oxide: TWA 2 mg/m3
(CAS# 1305-78-8)
Calcium sulfate dihydrate: TWA 10 mg/m3
(CAS# 13397-24-5)
Limestone: TWA 10 mg/m3
(CAS# 1317-65-3)
Magnesium oxide: TWA 10 mg/m3 Fume.
(CAS# 1309-48-4)
Portland cement: TWA 10 mg/m3
(CAS# 65997-15-1)
Quartz: TWA 0.025 mg/m3 Respirable particles.
(CAS# 14808-60-7)
Canada. British Columbia OELs. (Occupational Exposure Limits for Chemical Substances, Occupational Health and
Safety Regulation 296/97, as amended)
Components Type Value Form
Calcium Hydroxide: TWA 5 mg/m3
(CAS# 1305-62-0)
Calcium oxide: TWA 2 mg/m3
(CAS# 1305-78-8)
Calcium sulfate dihydrate: STEL 20 mg/m3 Total dust, TWA 10 mg/m3 Inhalable
(CAS# 13397-24-5)
Limestone: STEL 20 mg/m3 Total dust, TWA 3 mg/m3 Respirable fraction 10 mg/m3 Total dust.
(CAS# 1317-65-3)
Magnesium oxide: STEL 10 mg/m3 Respirable dust and/or fume, TWA 3 mg/m3 Respirable dust and/or fume, 10 mg/m3
Inhalable fume.
(CAS# 1309-48-4)
Portland cement: TWA 3 mg/m3 Respirable fraction, 10 mg/m3 Total dust. (CAS# 65997-15-1)
Quartz TWA 0.025 mg/m3 Respirable fraction.
(CAS# 14808-60-7)
Canada, Ontario OELs. (Control of Exposure to Biological or Chemical Agents)
Components Type Value Form
Caldium Hydroxide: TWA 5 mg/m3
(CAS# 1305-62-0)
Calcium oxide: TWA 2 mg/m3
(CAS# 1305-78-8)
Calcium sulfate dihydrate: TWA 10 mg/m3 Inhalable fraction.
(CAS# 13397-24-5)
Magnesium oxide: TWA 10 mg/m3 Inhalable fraction.
(CAS# 1309-48-4)
Portland cement: TWA 10 mg/m3
```

Figure A.40 Genshaft Honors College certification data submittal page 35.

Page 5 of 14

(CAS# 65997-15-1) Quartz: TWA 0.1 mg/m3 Respirable. (CAS# 14808-60-7)

Canada. Quebec OELs. (Ministry of Labor - Regulation Respecting the Quality of the Work Environment) Components Type Value Form

Calcium Hydroxide: TWA 5 mg/m3 (CAS# 1305-62-0)
Calcium oxide: TWA 2 mg/m3 (CAS# 1305-78-8)
Calcium sulfate dihydrate: TWA 5 mg/m3 Respirable dust, 10 mg/m3 Total dust. (CAS# 13397-24-5)
Limestone: TWA 10 mg/m3 Total dust. (CAS# 1317-65-3)
Magnesium oxide: TWA 10 mg/m3 Fume.

(CAS# 1309-48-4)
Portland cement: TWA 5 mg/m3 Respirable dust, 10 mg/m3 Total dust.

(CAS# 65997-15-1) Quartz: TWA 0.1 mg/m3 Respirable dust. (CAS# 14808-60-7)

Mexico. Occupational Exposure Limit Values

Components Type Value Form
Calcium Hydroxide: TWA 5 mg/m3
(CAS# 1305-62-0)
Calcium oxide: TWA 2 mg/m3
(CAS# 1305-78-8)
Calcium sulfate dihydrate: TWA 10 mg/m3
(CAS# 13397-24-5)
Limestone: STEL 20 mg/m3, TWA 10 mg/m3
(CAS# 13317-65-3)
Magnesium oxide: TWA 10 mg/m3 Fume.
(CAS# 1309-48-4)
Portland cement: STEL 20 mg/m3, TWA 10 mg/m3
(CAS# 45997-15-1)
Quartz: TWA 0.1 mg/m3
(CAS# 14808-60-7)

Engineering Controls

Occupational exposure to nuisance dust (total and respirable) and respirable crystalline silica should be monitored and controlled. Use process enclosures, local exhaust ventilation, or other engineering controls to control airborne levels below recommended exposure limits. Ventilation should be sufficient to effectively remove and prevent buildup of any dusts or fumes that may be generated during handling or thermal processing. If engineering measures are not sufficient to maintain concentrations of dust particulates below the Occupational Exposure Limit (OEL), suitable respiratory protection must be worn. If material is ground, cut, or used in any operation which may generate dusts, use appropriate local exhaust ventilation to keep exposures below the recommended exposure limits.

Personal Protective Equipment

Exposure	Equipment
Eye / Face	To prevent eye contact, wear safety glasses with side shields, safety goggles or face shields when handlin, wet cement. Contact lenses should not be worn when working with cement or cement products.
Skin	Wear chemical-resistant gloves, footwear and protective clothing appropriate for risk of exposure.
	Contact glove manufacturer for specific information. Do not rely on barrier crèmes; barrier crèmes should
	Contact glove manufacturer for specific information. Do not rely on parrier cremes; parrier cref
age 6 of 14	May 2015

Figure A.41 Genshaft Honors College certification data submittal page 36.

not be used in place of gloves.

Respiratory Avoid tasks which cause dust to become airborne. Use local or general ventilation to control exposure below applicable exposure limits. Use NIOSH/MSHA approved (30 CFR 11) or NIOSH approved (42 CFR 84)

respirators in poorly ventilated areas, or if an applicable exposure limit is exceeded, or when dust causes discomfort or irritation.

Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove General Hygiene

considerations

9. PHYSICAL AND CHEMICAL PROPERTIES

Property	Value	Comments
Appearance	Semi-fluid, flowable, granular paste	
Physical State	Fluid	
Odor	Odorless	
Odor Threshold	Not available	
рН	12-13 in water	
Melting / Freeze Point	Not available	
Boiling Point And Range	Not available	
Flash Point	Not flammable. Not combustible.	
Evaporation Rate	Not available	
Flammability	Not available	
Flammability Limits	Not available	
Vapor Pressure	Not available	
Vapor Density	Not available	
Specific Gravity	1.9-2.4	
Solubility	Slight (0.1-1%)	
Partition Coefficient	Not available	
Autoignition Temperature	Not available	
Decomposition Temperature	Not available	
Viscosity	Varies	
Percent Volatiles	Not available	

10. STABILITY AND REACTIVITY

Not expected to be reactive.

Stability

The product is stable under normal conditions of use, storage and transport.

Page 7 of 14 May 2015

Figure A.42 Genshaft Honors College certification data submittal page 37.

Reactions / Polymerization

Not expected to occur.

Conditions to Avo

Contact with incompatible materials. When exposed to air it will absorb carbon dioxide to form calcium carbonate and magnesium oxide. When heated at temperatures above 580 deg. C, it loses water to form calcium oxide, magnesium oxide and water.

Incompatible Materials

Wet material is alkaline and will react with a cids, ammonium salts, aluminum and other reactive metals. Hardened material is attacked by hydrofluoric acid releasing toxic silicon tetrafluoride gas.

Hazardous Decomposition Products

None expected under normal conditions of use.

11. TOXICOLOGICAL INFORMATION

Acute effects: Causes skin, eye and digestive tract burns.

Acute Toxicity (Inhalation LC50)

Portland cement (CAS# 65997-15-1): >1 mg/L (rat, 4hr)

Limestone (CAS# 1317-65-3): LC50 > 3 mg/L (rat, 4 hr) (Similar substance)

Calcium Hydroxide (CAS# 1305-62-0): No data available

Calcium Sulfate dehydrate (CAS# 13397-24-5): LC50 > 3.26 mg/L air (inhalation, dust, 4 h)

Magnesium Oxide (CAS# 1309-48-4): No data available.

Quartz (CAS# 14808-60-7): No data available.

Fly Ash (CAS# 68131-74-8): LC50 5.38 mg/L (rat, 4 hr) (fluidized Bed Combustion Fly Ash)

Calcium Oxide (CAS# 1305-78-8): No data available

Acute Toxicity (Oral LC50)

Portland cement (CAS# 65997-15-1): No data available. Limestone (CAS# 1317-65-3): LDS0 6450 mg/kg (rat) (similar substance) Caldum Hydroxide (CAS# 1305-62-0): LDS0 7340 mg/kg (rat) Caldum Sulfate dehydrate (CAS# 13397-24-5): LDS0 > 2000 mg/kg (rat) Magnesium Oxide (CAS# 1309-48-4): LDS0 3870 mg/kg (rat) Quartz (CAS# 14808-60-7): LDS0 500 mg/kg (rat) Fly Ash: No data available. Caldum Oxide (CAS# 1305-78-8): LDS0 > 2000 mg/kg (rat)

Acute Toxicity (Dermal LC50)

Portland cement (CAS# 65997-15-1): No data available Limestone (CAS# 1317-65-3): ID50 > 2000 mg/kg (Similar substance) Caldum Hydroxide (CAS# 1305-62-0): ID50 > 2500 mg/kg Caldum Sulfate dehydrate (CAS# 13397-24-5): No data available. Magnesium Oxide (CAS# 1309-48-4): No data available Quartz (CAS# 14808-60-7): No data available. Fily Ash (CAS# 68131-74-8): ID50 > 2000 mg/kg (Rabbit) Caldum Oxide (CAS# 1305-78-8): No data available.

 $\textbf{Skin Corrosion/Irritation:} \ \textbf{M} \textbf{ay cause skin initation.} \ \textbf{M} \textbf{ay cause serious burns in the presence of moisture.} \\$

Serious Eye Damage/Irritation: Causes serious eye damage. May cause burns in the presence of moisture.

Respiratory or Skin Sensitization: May cause respiratory tract irritation. The product may contain chromates, which may cause an allergic skin sensitization reaction.

Page 8 of 14 May 2015

Figure A.43 Genshaft Honors College certification data submittal page 38.

Germ Cell Mutagenicity: No data available.

Cardinogenicity: Cement may contain trace amounts of respirable crystalline silica and hexavalent chromium which are classified by NTP and IARC as known human cardinogens.

ACGIH Carcinogens

Magnesium oxide (CAS# 1309-48-4): A4 Not classifiable as a human carcinogen. Portland cement (CAS# 65997-15-1): A4 Not classifiable as a human carcinogen Quartz (CAS# 14808-60-7): A2 Suspected human carcinogen.

IARC Monographs. Overall Evaluation of Carcinogenicity

Quartz (CAS# 14808-60-7): 1 Cardinogenic to humans.

US NTP Report on Carcinogens: Known carcinogen

Quartz (CAS# 14808-60-7): Known To Be Human Carcinogen.

US OSHA Specifically Regulated Substances: Cancer hazard

No data available.

Teratogenicity: No data available

Specific Target Organ Toxicity (Repeated Exposure): Quartz (CAS #14808-60-7): Category 1, route of exposure: inhalation, target organs: respiratory tract and organs.

Specific Target Organ Toxicity (Single Exposure): Calcium oxide, Magnesium oxide, Portland cement; Category 3, route of exposure: inhalation and skin contact, target organs: Respiratory tract irritation, skin irritation.

Aspiration Hazard: No data available.

Potential Health Effects: Causes serious eye damage. May cause respiratory irritation. Causes severe burns. May cause an allergic skin reaction.

Chronic effects: Respirable crystalline silica (quartz) can cause silicosis, a fibrosis (scarring) of the lungs. Some studies show excess numbers of cases of scleroderma, connective tissue disorders, lupus, rheumatoid arthritis, chronic kidney diseases and end-stage kidney disease in workers exposed to respirable crystalline silica. Occupational exposure to respirable dust and respirable crystalline silica should be monitored and controlled. Danger of serious damage to health by prolonged exposure.

Crystalline silica is considered a hazard by inhalation. IARC has classified crystalline silica as a Group 1 substance, carcinogenic to humans. This classification is based on the findings of laboratory animal studies (inhalation and implantation) and epidemiology studies that were considered sufficient for carcinogenicity. Excessive exposure to crystalline silica can cause silicosis, a non-cancerous lung disease. Portland cement (CAS# 65997-15-1): is not classifiable as a human carcinogen.

Repeated or prolonged inhalation of dust may lead to chronic respiratory irritation. If sensitized to hexavalent chromium, a severe allergic dermal reaction may occur when subsequently exposed to very low levels.

12. ECOLOGICAL INFORMATION

Toxicity

Data for Mixture: Ready Mix Concrete (Concrete) (CAS# Mixture)

Aquatic Toxidity- Acute Crustacea EC50 Daphnia 350 mg/l, 48 hours, estimated

Fish LC50 Fish 703.9267 mg/l, 96 hours, estimated

Data for Component: Calcium Hydroxide (CAS# #1305-62-0)

Page 9 of 14 May 2015

Figure A.44 Genshaft Honors College certification data submittal page 39.

Aquatic Toxicity-Acute Gasterosteus aculeatus 96 hr LC50 = 457 mg/L

Oncorhynchus mykiss 96 hr LCS0 = $50.6\,\mathrm{mg/L}$ Crangon septemspinosa 96 hr LCS0 = $158\,\mathrm{mg/L}$ Daphnia magna $48\,\mathrm{hr}$ ECS0 = $49.1\,\mathrm{mg/L}$ Daphnia magna $48\,\mathrm{hr}$ ECS0 > $100\,\mathrm{mg/L}$ Danio rerio $96\,\mathrm{hr}$ LCS0 > $11.1\,\mathrm{mg/L}$

Aquatic Toxicity-Chronic Crangon septemspinosa 14 d NOEC = 32 mg/L

Data for Component: Calcium sulfate dihydrate (CAS# 13397-24-5)

Aquatic Toxicity-Acute Fish LC50 Fathead minnow (Pimephales promelas) > 1970 mg/l, 96 hours

Data for Component: Calcium oxide (CAS#1305-78-8)
Aquatic Toxidty-Acute Cyprinus carpio 96 hr LC50 = 1070 mg/L

Aquatic Toxidty-Chronic Tilapia nilotica 46 days NOEC = 100 mg/L

Data for Component: Quartz (CAS# 14808-60-7)

Aquatic Toxicity- Acute Daphnia magna 24 hr LL50 > 10000 mg/L

Danio rerio 96 hr LLO = 10000 mg/LDaphnia magna 48 hr EC50 > 100 mg/L (similar substance)

Desmodesmus subspicatus 72 hr EC50 > 14 mg/L (similar substance)

Persistence and Degradation: Persistent
Bioaccumulative Potential: Not Bioaccumulative
Mobility in Soil: No data available.
Other Adverse Effects: No data available.
Other Information: No data available.

13. DISPOSAL CONSIDERATIONS

The generation of waste should be avoided or minimized wherever possible. Disposal of this product, solutions and any byproducts should comply with the requirements of environmental protection and waste disposal legislation and any regional
local authority requirements. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor.

Untreated waste should not be released to the sewer unless fully compliant with the requirements of all authorities with
jurisdiction. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not
feasible. This material and its container must be disposed of in a safe manner. Care should be taken when handing empty
containers that have not been cleaned or rinsed out. Empty containers or liners may retain some product residues.

Avoid dispersal of spilled material and runoff, and contact with soil, waterways, drains and sewers.

Dispose in accordance with applicable federal, state, and local regulations. Empty containers may contain product residues. Do not dispose of waste into sewer. This material and its container must be disposed of as hazardous waste.

14. TRANSPORT INFORMATION

US DOT

UN Identification Number Not regulated Proper Shipping Name Not available Hazard Class and Packing Group Not available Shipping Label Not available Placard / Bulk Package Not available Emergency Response Guidebook Guide Number Not available

IATA Cargo

UN Identification Number Not regulated Shipping Name / Description Not available Hazard Class and Packing Group Not available

Page 10 of 14 May 2015

Figure A.45 Genshaft Honors College certification data submittal page 40.

ICAO Label	Not available
Packing Instructions Cargo	Not available
Max Quantity Per Package Cargo	Not available
IATA Passenger	
UN Identification Number	Not regulated
Shipping Name / Description	Not available
Hazard Class and Packing Group	Not available
ICAO Label	Not available
Packing Instructions Passenger	Not available
Max Quantity Per Package	Not available
IMDG	
UN Identification Number	Not regulated
Shipping Name / Description	Not available
Hazard Class and Packing Group	Not available
IMDG Label	Not available
FmS Number	Not available
Marine Pollutant	Not available
15. REGULATORY INFORMAT	TION
OSHA Hazard Communication Standard	ION
This product is a "Hazardous Chemical" as	defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200.
U.S. Federal, State, and Local Regulatory I	nformation
U.S. Toxic Substances Control Act	
All components are on the U.S. EPA TSCA II	nventory List
TSCA Section 12(b) Export Notification (40	CFR 707, Subpt. D)
CERCLA (Superfund) reportable quantity (lbs) (40 CFR 302.4)
This product is not listed as a CERCLA subst	
Superfund Amendments and Reauthoriza	tion Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of
1986) Sections 311 and 312	
Immediate Hazard (Acute) - Yes	
Delayed Hazard (Chronic) - Yes	
Fire Hazard - No	
Pressure Hazard - No	
Reactivity Hazard - No	
Section 302 extremely hazardous substan	ce (40 CRF 355, Appendix A)-No
Drug Enforcement Administration (DEA) (2	21 CFR1308.11-15)-Not controlled
State regulations WARNING: This product	contains chemical(s) known to the State of California to cause cancer and birth
defects or other reproductive harm.	
US - California Hazardous Substances (Dire	ector's):
Calcium Hydroxide (CAS# 1305-62-0)	
Calcium oxide (CAS# 1305-78-8)	
Magnesium oxide (CAS# 1309-48-4)	
US - California Proposition 65 - Carcinoger	15 & Reproductive Toxicity (CRT):
Quartz (CAS# 14808-60-7)	2000 2000 TW 2004 GF
US - California Proposition 65 - CRT: Listed	I date/Carcinogenic substance
Quartz (CAS# 14808-60-7) Listed: October:	1, 1988 Cardinogenic.
US - New Jersey RTK - Substances:	

May 2015

Page 11 of 14

Figure A.46 Genshaft Honors College certification data submittal page 41.

Caldium Hydroxide (CAS# 1305-62-0) Calcium oxide (CAS# 1305-78-8) Listed. Calcium sulfate dihydrate (CAS# 13397-24-5) Limestone (CAS# 1317-65-3) Magnesium oxide (CAS# 1309-48-4) Portland cement (CAS# 65997-15-1) Quartz (CAS# 14808-60-7)
US - Pennsylvania RTK - Hazardous Substances:
Calcium Hydroxide (CAS# 1305-62-0) Caldium oxide (CAS# 1305-78-8) Calcium sulfate dihydrate (CAS# 13397-24-5) Limestone (CAS# 1317-65-3) Magnesium oxide (CAS# 1309-48-4) Portland cement (CAS# 65997-15-1) Quartz (CAS# 14808-60-7) US - Pennsylvania RTK - Hazardous Substances: Special hazard Calcium Hydroxide (CAS# 1305-62-0) Calcium oxide (CAS# 1305-78-8) Calcium sulfate dihydrate (CAS# 13397-24-5) Limestone (CAS# 1317-65-3) Magnesium oxide (CAS# 1309-48-4) Portland cement (CAS# 65997-15-1) Quartz (CAS# 14808-60-7)

Canadian Regulatory Information

This product has been classified in accordance with the hazard criteria of the CPR and the MSDS contains all the information required by the CPR.

WHMIS status

Controlled

WHMIS classification

E – Corrosive

WHMIS labeling

Inventory status	Country(s) or region Inventory name	On inventory (yes/no)*
Australia	Australian Inventory of Chemical Substances (AICS)	Yes
Canada	Domestic Substances List (DSL)	No
Canada	Non-Domestic Substances List (NDSL)	Yes
China	Inventory of Existing Chemical Substances in China (IECSC)	Yes
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	Yes
Europe	European List of Notified Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and New Chemical Substances (ENCS)	No
Korea	Existing Chemicals List (ECL)	Yes
New Zealand	New Zealand Inventory	No
Philippines	Philippine Inventory of Chemicals and	No

Page 12 of 14 May 2015

Figure A.47 Genshaft Honors College certification data submittal page 42.

	Chemical Substances (PICCS)	
United States & Puerto Rico	Toxic Substances Control Act (TSCA) Yes	
	Inventory	

^{*}A "Yes" indicates that all components of this product comply with the inventory requirements administered by the governing country(s)

16. OTHER INFORMATION

HMIS® Health rating including an * indicates a chronic hazard HMIS® ratings Health: 3* Flammability: 0 Physical hazard: 1

NFPA ratings Health: 3 Flammability: 0 Instability: 1

Version:2015.05.27

Issue Date 5/27/2015 Prior Issue Date 10/12/2012

Description of Revisions

Revise to meet Globally Harmonized System for chemical hazard communication requirements pursuant to OSHA regulatory revisions 77 FR 17884, March 26, 2012.

Notice to reader

While the information provided in this safety data sheet is believed to provide a useful summary of the hazards of Portland cement as it is commonly used, the sheet cannot anticipate and provide all of the information that might be needed in every situation. Inexperienced product users should obtain proper training before using this product. In particular, the data furnished in this sheet do not address hazards that may be posed by other materials mixed with Portland cement to produce Portland cement products. Users should review other relevant material safety data sheets before working with this Portland cement or working on Portland cement products, for example, Portland cement concrete.

SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE PRODUCT OR THE MERCHANTABILITY OR FITNESS THEREOF FOR ANY PURPOSE OR CONCERNING THE ACCURACY OF ANY INFORMATION PROVIDED BY (Name of Company), except that the product shall conform to contracted specifications. The information provided herein was believed by the (Name of Company) to be accurate at the time of preparation or prepared from sources believed to be reliable, but it is the responsibility of the user to investigate and understand other pertinent sources of information to comply with all laws and procedures applicable to the safe handling and use of product and to determine the suitability of the product for its intended use. Buyer's exclusive remedy shall be for damages and no daim of any kind, whether as to product delivered or for non-delivery of product, and whether based on contract, breach of warranty, negligence, or otherwise shall be greater in amount than the purchase price of the quantity of product in respect of which damages are daimed. In no event shall Seller be liable for incidental or consequential damages, whether Buyer's daim is based on contract, breach of warranty, negligence or otherwise.

Abbreviations

ACGIH — American Conference of Governmental Industrial Hygienists
CAS# — Chemical Abstract Service
CERCLA — Comprehensive Emergency Response and Comprehensive Liability Act
CFR — Code of Federal Regulations
DOT — Department of Transportation

Page 13 of 14 May 2015

Figure A.48 Genshaft Honors College certification data submittal page 43.

GHS — Globally Harmonized System
HEPA — High Efficiency Particulate Air
IATA — International Air Transport Association
IARC — International Air Transport Association
IARC — International Agency for Research on Cancer
IMDG — International Maritime Dangerous Goods
NIOSH — National Institute of Occupational Safety and Health
NOEC — No Observed Effect Concentration
NTP — National Toxicology Program
OSHA — Occupational Safety and Health Administration
PEL — Permissible Exposure Limit
REL — Recommended Exposure Limit
RQ — Reportable Quantity
SARA — Superfund Amendments and Reauthorization Act
SDS — Safety Data Sheet
TLV — Threshold Limit Value
TPQ — Threshold Planning Quantity
TSCA — Toxic Substances Control Act
TWA — Time-Weighted Average
UN — United Nations

Disclaimer Statement

This information is furnished without warranty, expressed or implied, as to accuracy or completeness. The information is obtained from various sources including the manufacturer and other third party sources. The information may not be valid under all conditions nor if this material is used in combination with other materials or in any process. Final determination of suitability of any material is the sole responsibility of the user.

** End of Safety Data Sheet **

Page 14 of 14 May 2015

Figure A.49 Genshaft Honors College certification data submittal page 44.

				1		/					
						avoid harm to sensitive at act with wet cement or cor- tective clothing. Where or ere directly or through satu in thoroughly.		A CONTRACTOR OF THE PARTY OF TH	www.minimum.ac.	Control of the contro	Market en
PLANT		TICKET#		ORDER#	TRUC		SLUMP		DATE		LOAD TIME
				424002		2068	8.5				1772
CUSTOME	R#	SOLD TO		TILL ARIES		2000	P.O. #		PROJECT		LEFT PLANT
									1152		1738
PROJECTA		LLEGE- I	DILL CR	CHAPTO	4		DRIVER	I Part Name			ARRIVE JOB
DELIVERY	ADDRESS	tendentile	MILLED	SMRF 15			MAP REF	DWE	MILES		START POUR
CITY, STAT		AVE					POURING MET	HOD	UNLOADIN	G METHOD	FINISH POUR
INSTRUCT				, FL			A CLASSIC				
	27 639 (CALL	BEFORE		COMMENTS COVID19 - social di				ARRIVE PLANT
LOAD QUANTITY	QUANTITY	ORDER	PRODUCT	CODE	PRODUCT DESC	RIPTION		UOM	UNIT PRICE	AMOUNT	WATER ADDED
	9.00	45.00	50JAG92			SLAGDEC		cy			BEGINNING
								17			MIDDLE
		77 -	1213	Marine 1							11/22/11/2
			1 43								END
		Pr 18						Page 1			
			1							100	CYLINDERS TAKEN
		15.9									CYLINDERS TAKEN BEGINNING
											BEGINNING
						/					
						/					BEGINNING
						V					BEGINNING MIDDLE END
											BEGINNING
											BEGINNING MIDDLE END
			81 00 381								BEGINNING MIDDLE END PLANT INITIALS
9.00			81 00 381 8100383		ENV CY FUEL CY						BEGINNING MIDDLE END
											BEGINNING MIDDLE END PLANT INITIALS
											BEGINNING MIDDLE END PLANT INITIALS
											BEGINNING MIDDLE END PLANT INITIALS
											BEGINNING MIDDLE END PLANT INITIALS
	ALE - LECEIVEO \$			CUSTOMER IS RE-	FUEL CY	R SUPPLYING TRUM	OK.	SUBTO	TAL TAX	1	BEGINNING MIDDLE END PLANT INITIALS

Figure A.50 Genshaft Honors College concrete delivery ticket 1.

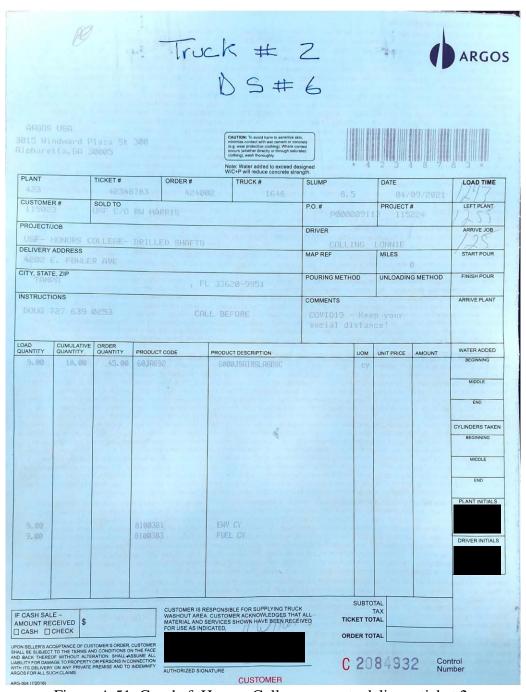


Figure A.51 Genshaft Honors College concrete delivery ticket 2.

			4.7	Tr	5# ucl	16 12 ±	3			1	ARGO
ARGOS 015 Win		laza St	300		- 17	TTION: To avoid harm to sensition or and with a sensition contact with well ceremon in wave protection coloring. When is (whether directly or shrough light, wash throating, with the coloring, with the coloring wash throating to the coloring of the coloring wash throating washing the coloring washing w			STOCKET STOCKE		
						: Water added to excee +P will reduce concrete		* 4	2 3	4 8 7	8 5 *
LANT 423		TICKET # 42348	785	ORDER# 42400		TRUCK#	SLUMP	0.5	DATE	ON LODGE	LOAD TIME
USTOMER	#	SOLD TO				1990	PO#	8.5	PROJECT	#	LEFT PLANT
ROJECT/JC			THE PROPERTY	113	diam'r.		No. of Parties	00000911	5 115	224	115
		OLLEGE-	DRILLE	D SHAFTS			DRIVER	ABRERA	CARLOS		ARRIVE JOB
ELIVERY A				THE REAL PROPERTY.		Calcania in	MAP REF		MILES	0	START POUR
ITY, STATE	E, ZIP			, FL	. 33620	0-9951	POURING I	METHOD		IG METHOD	FINISH POUR
ISTRUCTION	ONS						COLUMN				ARRIVE PLANT
DOUG 7	727 639			CAL	L BEFO	DRE		s 19 - Kee I distan			
DOUG 7	CUMULATIVE QUANTITY	ORDER QUANTITY	PRODUCT	CODE	PRODUCT	DESCRIPTION	COVID	19 - Kee l distan		AMOUNT	WATER ADDED
DOUG 7	727 639	ORDER	PRODUCT 60JAG9	CODE	PRODUCT	2 m No.	COVID	19 - Kee L distan	ce!	AMOUNT	BEGINNING
DOUG 7	CUMULATIVE QUANTITY	ORDER QUANTITY		CODE	PRODUCT	DESCRIPTION	COVID	19 - Kee l distan	ce!	AMOUNT	
DOUG 7	CUMULATIVE QUANTITY	ORDER QUANTITY		CODE	PRODUCT	DESCRIPTION	COVID	19 - Kee l distan	ce!	AMOUNT	BEGINNING
DOUG 7	CUMULATIVE QUANTITY	ORDER QUANTITY		CODE	PRODUCT	DESCRIPTION	COVID	19 - Kee l distan	ce!	AMOUNT	BEGINNING MIDDLE END CYLINDERS TAKEN
DOUG 7	CUMULATIVE QUANTITY	ORDER QUANTITY		CODE	PRODUCT	DESCRIPTION	COVID	19 - Kee l distan	ce!	AMOUNT	BEGINNING / MIDDLE END
DOUG 7	CUMULATIVE QUANTITY	ORDER QUANTITY		CODE	PRODUCT	DESCRIPTION	COVID	19 - Kee l distan	ce!	AMOUNT	BEGINNING MIDDLE END CYLINDERS TAKEN
DOUG 7	CUMULATIVE QUANTITY	ORDER QUANTITY		CODE	PRODUCT	DESCRIPTION	COVID	19 - Kee l distan	ce!	AMOUNT	BEGINNING MIDDLE END CYLINDERS TAKEN BEGINNING
DOUG 7	CUMULATIVE QUANTITY	ORDER QUANTITY		CODE	PRODUCT	DESCRIPTION	COVID	19 - Kee l distan	ce!	AMOUNT	MODLE CYLINDERS TAKEN BEGINNING
DOUG 7	CUMULATIVE QUANTITY	ORDER QUANTITY	60JA693	CODE	PRODUCTI 5900J	DESCRIPTION JSATRSLAGDSC	COVID	19 - Kee l distan	ce!	AMOUNT	BEGINNING MIOCLE END CYLINDERS TAKEN BEGINNING MIOCLE END
DOUG 7	CUMULATIVE QUANTITY	ORDER QUANTITY	60JA69	CODE	PRODUCTI 6000J	DESCRIPTION JSATRSLAGDSC	COVID	19 - Kee l distan	ce!	AMOUNT	BEGINNING MIOCLE END CYLINDERS TAKEN BEGINNING MIOCLE END
DOUG 7	CUMULATIVE QUANTITY	ORDER QUANTITY	60JA693	CODE	PRODUCTI 5900J	DESCRIPTION JSATRSLAGDSC	COVID	19 - Kee l distan	ce!	AMOUNT	BEGINNING MIGOLE END CYLINDERS TAKEN BEGINNING MIGOLE END PLANT INITIALS
DOUG 7	CUMULATIVE QUANTITY	ORDER QUANTITY	60JA693	CODE	PRODUCTI 5900J	DESCRIPTION JSATRSLAGDSC	COVID	19 - Kee l distan	ce! see	AMOUNT	BEGINNING MIGOLE END CYLINDERS TAKEN BEGINNING MIGOLE END PLANT INITIALS
DOUG 7	CUMULATIVE QUANTITY	ORDER QUANTITY	60JA693	CODE	PRODUCT 5000J	DESCRIPTION JSATRSLAGDSC OY CY	COVIDI	UOM CY	UNIT PRICE	AMOUNT	BEGINNING MIGOLE END CYLINDERS TAKEN BEGINNING MIGOLE END PLANT INITIALS
9, 80 9, 80	CUMULATIVE QUANTITY 27.00	ORDER QUANTITY	60JA693	CODE	ENV C FUEL I	DESCRIPTION JSATRSLAGDSC	COVIDI	UOM CY	UNIT PRICE	AMOUNT	BEGINNING MIGOLE END CYLINDERS TAKEN BEGINNING MIGOLE END PLANT INITIALS

Figure A.52 Genshaft Honors College concrete delivery ticket 3.

ARGOS						Kt.		0		,	
ARGOS								505	62	34	
		laza St 3	500			E: To avoid harm to sensitive ak contact with well cement or con protective clothing). Where co- hether directly or through satur weath thoroughly. ater added to exceed de will reduce concrete stre			2 3 4	8 7	8 6 *
PLANT		TICKET#		ORDER#		vill reduce concrete stre UCK #	SLUMP	- 34	DATE		LOAD TIME
423		423481		42400		1645	8.1			09/2021	1.40
CUSTOMER		SOLD TO USF 0/0	RW HAR	RIS		L ME TO	P.O. #	00911	PROJECT #		LEFT PLANT
PROJECT/J		4 10 10 10				77 2 971	DRIVER		V 1000 1019		ARRIVE JOB
USF- H	IONORS C	OLLEGE-	DRILLE	D SHAFTS	T NP		CHAPI	MAN	ANDRE		222
DELIVERY A	ADDRESS FOWLE			TOTAL PROPERTY.			MAP REF	100	MILES		START POUR
CITY, STATE		II HAF	AT A STATE		O S S-ING	CONTRACTOR OF STREET	DOUBLING NEED	100		CMETHOD	LI 2S FINISH POUR
TAME			1	, FL	33620-	9951	POURING METH	IOD	UNLOADIN	GMETHOD	FINISH POUR
INSTRUCTION	ONS			1111			COMMENTS				ARRIVE PLANT
DOUG 7	727 639	0253	-						The same		
			4	COL	L BEEDS	Œ		- Kee			
				CAL	L BEFOR	RE	COVID19				
	CUMULATIVE		PRODUCT	CODE	PRODUCT DE	ESCRIPTION	COVID19	UOM		AMOUNT	WATER ADDED BEGINNING
LOAD QUANTITY 9.00	CUMULATIVE QUANTITY 36, 90	ORDER QUANTITY 54.00	PRODUCT 60JAG9	CODE	PRODUCT DE	est on setting	COVID19	istan	ce!	AMOUNT	
				CODE	PRODUCT DE	ESCRIPTION	COVID19	UOM	ce!	AMOUNT	
				CODE	PRODUCT DE	ESCRIPTION	COVID19	UOM	ce!	AMOUNT	BEGINNING
				CODE	PRODUCT DE	ESCRIPTION	COVID19	UOM	ce!	AMOUNT	BEGINNING
				CODE	PRODUCT DE	ESCRIPTION	COVID19	UOM	ce!	AMOUNT	BEGINNING
				CODE	PRODUCT DE	ESCRIPTION	COVID19	UOM	ce!	AMOUNT	BEGINNING MIDDLE
				CODE	PRODUCT DE	ESCRIPTION	COVID19	UOM	ce!	AMOUNT	BEGINNING MIDDLE END CYLINDERS TAKE: BEGINNING
				CODE	PRODUCT DE	ESCRIPTION	COVID19	UOM	ce!	AMOUNT	BEGINNING MIDDLE END CYLINDERS TAKE
				CODE	PRODUCT DE	ESCRIPTION	COVID19	UOM	ce!	AMOUNT	BEGINNING MIDDLE END CYLINDERS TAKE: BEGINNING
				CODE	PRODUCT DE	ESCRIPTION	COVID19	UOM	ce!	AMOUNT	BEGINNING MIDDLE END CYLINDERS TAKE BEGINNING MIDDLE
			60,7669	CODE 2	PRODUCT DE 6000.JS	ESCRIPTION A I RSL AGUSC	COVID19	UOM	ce!	AMOUNT	BEGINNING MIDDLE END CYLINDERS TAKE: BEGINNING MIDDLE END
9.00			60JR69	CODE 2	PRODUCT DE E000JS	ESCRIPTION AT RSLAGDSC	COVID19	UOM	ce!	AMOUNT	BEGINNING MIDDLE END CYLINDERS TAKE: BEGINNING MIDDLE END
9.00			60,7669	CODE 2	PRODUCT DE 6000.JS	ESCRIPTION AT RSLAGDSC	COVID19	UOM	ce!	AMOUNT	BEGINNING MIDDLE END CYLINDERS TAKE: BEGINNING MIDDLE END
9.00			60JR69	CODE 2	PRODUCT DE E000JS	ESCRIPTION AT RSLAGDSC	COVID19	UOM	ce!	AMOUNT	BEGINNING MIDDLE END CYLINDERS TAKE: BEGINNING MIDDLE END PLANT INITIALS
9.00			60JR69	CODE 2	PRODUCT DE E000JS	ESCRIPTION AT RSLAGDSC	COVID19	UOM	ce!	AMOUNT	BEGINNING MIDDLE END CYLINDERS TAKE: BEGINNING MIDDLE END PLANT INITIALS
9.00			60JR69	CODE 2	PRODUCT DE E000JS	ESCRIPTION AT RSLAGDSC	COVID19	UOM	ce!	AMOUNT	BEGINNING MIDDLE END CYLINDERS TAKE: BEGINNING MIDDLE END PLANT INITIALS
9.00			60JR69	CODE 2	PRODUCT DE E000JS	ESCRIPTION AT RSLAGDSC	COVID19	UOM CY	UNIT PRICE	AMGUNT	BEGINNING MIDDLE END CYLINDERS TAKE: BEGINNING MIDDLE END PLANT INITIALS
9.00	36, 90		60JR69	CODE 2	PRODUCT DE 6000/S	ESCRIPTION AT RSLAGDSC	covidia d	UOM	UNIT PRICE TAL TAX	AMGUNT	BEGINNING MIDDLE END CYLINDERS TAKE: BEGINNING MIDDLE END PLANT INITIALS

Figure A.53 Genshaft Honors College concrete delivery ticket 4.

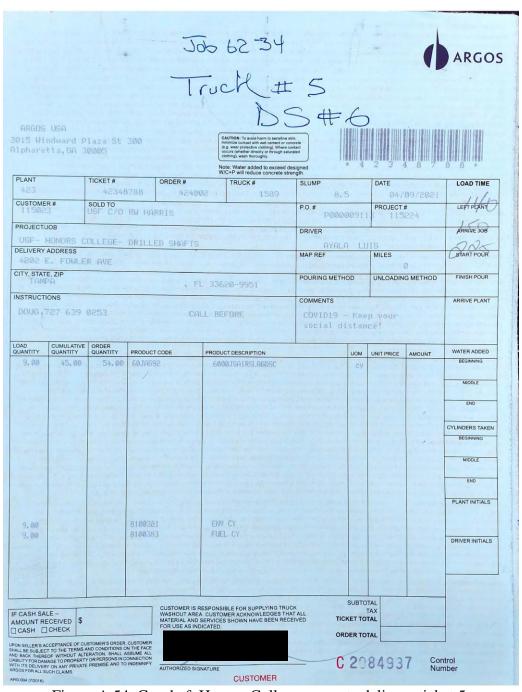


Figure A.54 Genshaft Honors College concrete delivery ticket 5.

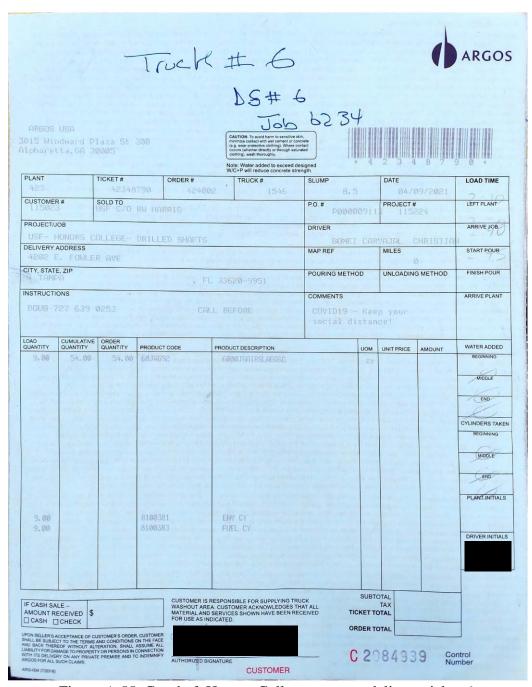


Figure A.55 Genshaft Honors College concrete delivery ticket 6.

Appendix B: Polk Parkway Drilled Shaft OC-13 Construction Documents

M220112640500 CTOP Technician Identification number Arrival on jobsite Water added at job site(gal or lbs) Water added at job site(gal or lbs) Additional mixing revs. With added water Time concrete completely discharged Total number of revolutions Initial slump Accept. Slump Accept. Air Accept. Concrete temp Accept. With added water Accept. With added water Accept. Concrete temp Accept. With added water Accept. Concrete temp Accept. With added water Accept. Concrete temp Accept. With added water Accept. Slump Accept. Air Accept. Concrete temp Accept. With added water Accept. With added water Accept. With added water Accept. Concrete temp Accept. With added water Accept. With added water Accept. Concrete temp Accept. With added water Accept. With added water Accept. With added water Accept. Slump Accept. Air Accept. Concrete temp Accept. With added water Accept. With added water Accept. Slump Accept. Air Accept. Concrete temp Accept. With added water Accept. With added water Accept. Air Accept. Concrete temp Accept. With added water Accept. Air Accept. Concrete temp Accept. With added water Accept. Air Accept. Concrete temp Accept. With added water Accept. Air Accept. Concrete temp Accept. With added water Accept. Air Accept. Concrete temp Accept. With added water Accept. Air Accept. Concrete temp Accept. Air Accept. Concrete temp Accept. Air Accept. Concrete temp Accept. With added water Accept. Air Accept. Concrete temp Accept. Concrete temp Accept. Air			PREFE	RRED M	ATERIALS	3		
Truck # DOT class Perferred Materials, Inc. Phone # Address: 255 EDAWARDS AVE LAKELAND PURPORT 15-530 Delivered to Phone # Address: 255 EDAWARDS AVE LAKELAND PURPORT 15-52 O DELIVER 15-5		Delive	rv Ticke	t for Str	uctural Co	oncret	е	
Concrete supplier Preferred Materials, Inc. Phone # Address: LAKELAND LAKELAND OT mix ID AUBURNDALE Address: B416		oject Number	430018	1-02-01	Deliai II		EEGITON	
Phone # Address: Phone # Address: 255 EDAWARDS AVE LAKELAND								
Truck # DOT class 8416	Con				Phone #			
Truck # DOT class 8416 CL IV 4000 Drilled Shaft 01-1429-02SC Cubic yards this load 9 1-1429-02SC Plant ID 01-1429-02SC Shaft Plant ID 01-1429-02SC Plant ID 01-1449-02SC Plant ID 01-1429-02SC Plant ID 01-1449-02SC Plant ID 01-1429-02SC Plant ID 01-1429-02SC Plant I		Address:			Address:	HWY	98 S & SR 570	7
Allowable Jobste Water Time loaded 11.30PM 83 2284 , 49 5 1.30PM 83 2284 , 49 5 1.30PM 83 2284 , 49 5 5 5 5 5 5 5 5 5			A. HED G.S.	7-1-52-	01			
### Alfowable Jobste Water Time loaded Mixing revolutions Cubic yards total today 17.00 13.00 Mixing revolutions Cubic yards total today 2 2 9 9 9 9			744000	, , ,		Al	JBURNDALE	
Allowable Jobsite Water 17.00	Truck #	DOT class		DOT mix ID	./	Cubic yards	this load	
Source Type amount-los Source Type amount-los Source Type amount-los Fine Aggregate Type Type Aggregate Type Type	8416					Cubic yards	9 s total today	nd un r
Source Type amount-los Source Type amount-los Source Type amount-los Fine Aggregate Tipe				iviixing revolu		oubic yarus		2284,45
Source Type amount-los Source Type amount-los Source Type amount-los Fine Aggregate Type Type Aggregate Type Type		1			1 - 1			
Source Type amount-los Source Type amount-los Source Type amount-los Fine Aggregate Type Type Aggregate Type Type							amount-lhe	5910
ARGOS 120 3540 16-659 4.20 12040 source Type amount-lbs Pit num. %moisture amount-lbs Coarse Aggregate #1 202.131 Air admixture 10-645 2.00 14440 Euclid AEA-92S 6 Pit num. %moisture amount-lbs source brand Type amount-oz. Coarse Aggregate #2 Admixture 10-645 0.00 Euclid SE D 621 Pit num. %moisture amount-lbs source brand Type amount-oz. ICE Lbs. Gal. Admixture Batch water Amount 182.00 1516.06 Gal. Lbs. Issuance of this ticket constitutes certification that the concrete batched was produced and information recorded in compliance with Department specifications for Structural Concrete M220112640500 CTQP Technician Identification number Signature of batch plant operator Arrival on jobsite 112 Number of revolutions upon arrival at job site Water added at job site(gal or lbs) Additional mixing revs. With added water Time concrete completely discharged 15 Initial concrete temp Accept. Air Accept. Concrete temp Accept. Air Accept. Concrete temp Accept Wilc ratio ssuance of this ticket constitutes certification that the maximum specified water consentituous ratio was not excepted and the batch was delivered and placed, in comp		Туре	amount-lbs				1 2 4	
Source Type amount-lbs Pit num.		120	3540			4.20		
10-645 2.00 14440 Euclid AEA-92S 6 Pit num. %moisture amount-lbs source brand Type amount-oz. Coarse Aggregate #2						%moisture	amount-lbs	
10-645 2.00 14440 Euclid AEA-92S 6 Pit num. %moisture amount-lbs source brand Type amount-oz. Coarse Aggregate #2		***	283 127	Air ad 1 d				
Pit num.					AEA-92S	1	6	
10-845 0.00 Euclid SE D 621 Pit num. % moisture amount-lbs source brand Type amount-oz. ICE Lbs. Gal. Admixture Batch water Amount 182.00 1516.06 Gal. Lbs. Gal. Lbs. Issuance of this ticket constitutes certification that the concrete batched was produced and information recorded in compliance with Department specifications for Structural Concrete M220112640500 CTOP Technician Identification number Signature of batch plant operator Arrival on jobsite Number of revolutions upon arrival at job site Water added at job site(gal or lbs) Additional mixing revs. With added water Time concrete completely discharged Total number of revolutions Initial slump Accept. Air Accept. Concrete temp Accept W/C ratio ssuance of this ticket constitutes certification that the maximum specified water cementiflous ratio was not excepted and the batch was delivered and placed in completely not excepted and the batch was delivered and placed in completely not excepted and the batch was delivered and placed in completely not excepted and the batch was delivered and placed in completely not excepted and the batch was delivered and placed in completely not excepted and the batch was delivered and placed in completely not excepted and the batch was delivered and placed in completely not except a mount of the parameter of the parame		%moisture	amount-lbs	source	brand	Туре	amount-oz.	
10-845 0.00 Euclid SE D 621 Pit num. % moisture amount-lbs source brand Type amount-oz. ICE Lbs. Gal. Admixture Batch water Amount 182.00 1516.06 Gal. Lbs. Gal. Lbs. Issuance of this ticket constitutes certification that the concrete batched was produced and information recorded in compliance with Department specifications for Structural Concrete M220112640500 CTOP Technician Identification number Signature of batch plant operator Arrival on jobsite Number of revolutions upon arrival at job site Water added at job site(gal or lbs) Additional mixing revs. With added water Time concrete completely discharged Total number of revolutions Initial slump Accept. Air Accept. Concrete temp Accept W/C ratio ssuance of this ticket constitutes certification that the maximum specified water comentialous ratio was not excepted and the batch was delivered and placed in completely in complete the plant operator in the maximum specified water comentialous ratio was not excepted and the batch was delivered and placed in complete.	Coarse Aggregate	#2		Admixture				
ICE Lbs. Gal. Admixture Batch water Amount 182.00 1516.06 Gal. Lbs. Issuance of this ticket constitutes certification that the concrete batched was produced and information recorded in compliance with Department specifications for Structural Concrete M220112640500 CTOP Technician Identification number Arrival on jobsite Water added at job site(gal or lbs) Additional mixing revs. With added water Time concrete completely discharged Initial slump Accept. Slump Accept. Air Accept. Concrete temp Accept. With added water cementiflous ratio ssuance of this ticket constitutes certification that the maximum specified water cementiflous ratio was not excepted and the batch was delivered and placed in comp	10-645	0.00		Euclid				
CE	Pit num.	% moisture		source	brand	Type	amount-oz.	-
Amount 182.00 1516.06 Gal. Issuance of this ticket constitutes certification that the concrete batched was produced and information recorded in compliance with Department specifications for Structural Concrete M220112640500 CTOP Technician Identification number Arrival on jobsite Water added at job site(gal or lbs) Additional mixing revs. With added water Time concrete completely discharged Total number of revolutions Initial slump Accept. Air Accept. Concrete temp Accept. WC ratio Ssuance of this ticket constitutes certification that the maximum specified water cementiflous ratio was not excepted and the batch was delivered and placed in comp		Lbs.			1	1	207	
Issuance of this ticket constitutes certification that the concrete batched was produced and information recorded in compliance with Department specifications for Structural Concrete M220112640500 CTOP Technician Identification number Arrival on jobsite Water added at job site(gal or lbs) Additional mixing revs. With added water Time concrete completely discharged Total number of revolutions Initial slump Accept. Slump Accept. Air Accept. Concrete temp Accept. WC ratio ssuance of this ticket constitutes certification that the maximum specified water competitions ratio was not excepted and the batch was delivered and placed in comp						Type		
Issuance of this ticket constitutes certification that the concrete batched was produced and information recorded in compliance with Department specifications for Structural Concrete M220112640500	Amount		777.7777.77					
M220112640500 CTOP Technician Identification number Arrival on jobsite Water added at job site(gal or lbs) Water added at job site(gal or lbs) Water concrete completely discharged Total number of revolutions Initial slump Accept. Slump Accept. Air Accept. Concrete temp Accept. W/C ratio Ssuance of this ticket constitutes certification that the maximum specified water cementillous ratio was not excepted and the batch was delivered and placed in completely incompletely i	Issuance of this tick	Gal.		t the concrete b	natched was produ	ced and info	ormation	
CTOP Technician Identification number Signature of batch plant operator Number of revolutions upon arrival at job site Water added at job site(gal or lbs) Additional mixing revs. With added water Time concrete completely discharged Total number of revolutions Total number of revolutions Initial slump Accept. Slump Accept. Air Accept. Concrete temp Accept W/C ratio ssuance of this ticket constitutes certification that the maximum specified water competitious ratio was not excepted and the batch was delivered and placed in comp	recorded in complia	nce with Dep	artment specific	ations for Struc	tural Concrete	0		
CTOP Technician Identification number Signature of batch plant operator Number of revolutions upon arrival at job site Water added at job site(gal or lbs) Additional mixing revs. With added water Time concrete completely discharged Total number of revolutions Total number of revolutions Initial slump Accept. Slump Accept. Air Accept. Concrete temp Accept W/C ratio ssuance of this ticket constitutes certification that the maximum specified water competitious ratio was not excepted and the batch was delivered and placed in comp	MO	20112640500						
Water added at job site(gal or lbs) Additional mixing revs. With added water Time concrete completely discharged Total number of revolutions Initial slump Accept. Slump Accept. Air Accept. Concrete temp Accept. WC ratio Ssuance of this ticket constitutes certification that the maximum specified water comentialous ratio was not excepted and the batch was delivered and placed in comp	CTQP Technician Ide							
Water added at job site(gal or lbs) Additional mixing revs. With added water Total number of revolutions Initial slump Accept. Slump Accept. Air Accept. Concrete temp Accept W/C ratio Suance of this ticket constitutes certification that the maximum specified water comentialous ratio was not excepted and the batch was delivered and placed in come	Arrival on jobsite	1412	_			al at job site		
Time concrete completely discharged Total number of revolutions Initial slump Accept. Slump Accept. Air Accept. Concrete temp Accept. W/C ratio Accept. W/C ratio Accept. W/C ratio Accept. Slump Accept. Concrete temp Accept. W/C ratio Accept. W/C ratio Accept. Concrete temp Accept. W/C ratio Accept. Concrete temp Accept. W/C ratio	Water added at job		12	Additional mix	ing revs. With adde	ed water	1	
nitial slump Initial slump			1				1	
Accept. Slump Accept. Air Accept. Concrete temp Accept W/C ratio ssuance of this ticket constitutes certification that the maximum specified water comentillous ratio was not excepted and the batch was delivered and placed in com	ime concrete comp	netely dischar	240	rotal number (or revolutions	201	4	
ssuance of this ticket constitutes certification that the maximum specified water comentitious ratio was not exceeded and the batch was delivered and placed in com	nitial slump	9 9 11	nitial air	Initial concrete	temp 0502	nitial W/C ra	atio , 39	
ssuance of this ticket constitutes certification that the maximum specified water comentitious ratio was not exceeded and the batch was delivered and placed in com	Accept. Slumn	2 0	ccept. Air	Accept, Concre	ete temp	Accept W/C	ratio	
vas not exceeded and the batch was delivered and placed in comp					/	/		
	was not exceeded as					nentitlous r	atio	

Figure B.1 OC-13 concrete delivery ticket 1.

		PREFE	RRED M	ATERIALS	S		140
*	Delive	rv Ticke	t for Str	uctural Co	oncret	е	
DO.	Project Number T Plant Number oncrete supplier Phone # Address:	438018- 16- Preferred M	1-52-01 530 aterials, Inc.	Serial # Date Delivered to Phone # Address:	HWY	2237953 vember 4, 2021 CONTI LLC / 98 S & SR 570	
Truck # 8472	DOT class	Drilled Shaft	DOT mix ID	429-02SC	Cubic yard	9	
Allowable Jo		Time loaded 1:50 PM	Mixing revolu		Cubic yard	s total today 18	
Cement SUMTERVILLI	_	2375		F		amount-lbs	7208,653
Slag ARGOS	Type	amount-lbs	Fine Aggrega 16-659		4.20	482.073	2208.653
source	Туре	amount-lbs	Pit num.		%moisture	amount-lbs	5723
Coarse Aggrega 10-645 Pit num.	2.00 %moisture	14560 amount-lbs	Air admixture Euclid source	AEA-92S brand	Туре	7 amount-oz.	
Coarse Aggregat	te #2		Admixture Euclid	SE	D	621	
Pit num.	% moisture Lbs.	amount-lbs 0.00 Gal.	Source	brand	Туре	amount-oz.	
CE Batch water Imount	173.00	1441.09	Euclid source	6200 brand	Туре	207 amount	
suance of this tecorded in comp	Gal. cket constitutes liance with Dep	Lbs. certification tha artment specific	t the concrete ations for Struc	batched was productural Concrete	iced and inf	mation	
TQP Technician I	1220112640500 dentification numb	per	Number of rev	Signature of batch	n plant opera	0 1	1 5 9.5
rrival on jobsite /ater added at jo	b site(gal or lbs	243		king revs. With add		151	S-9.5 A-2.6 T-84
me concrete con	mpletely dischar	ged 300		of revolutions	211		T-84°
itiai siump	7	nitial air	Initial concrete Accept. Concr		Initial W/C r	1 3/	
suance of this tid	1.5	certification that	1	specified water ce	/ /	15/	w/c = 0.
s not exceeded	and the batch v	vas delivered ar	d placed in co	mpliance			
TQP Technician			(2)	Signature of contra	actors repre	sentative	

Figure B.2 OC-13 concrete delivery ticket 2.

		PREFE	RRED M	ATERIALS	5		
	Delive	ery Ticke	t for Str	uctural Co	oncre	te	
Financial P	roject Numbe	438018-	1-52-01	Serial #		2237954 vember 4, 2021	
	Plant Numbe screte supplie			Date Delivered to		CONTI LLC	
Cor	Phone #			Phone #		Y 98 S & SR 570	
	Address	255 EDAW		Address:	HW	1 98 5 & SK 570	
		LAKE	LAND		А	UBURNDALE	
Truck #	DOT class		DOT mix ID		Cubic yard	Is this load	
9112	CL IV 400	O Drilled Shaft	01-14 Mixing revolu	429-02SC	Cubic yard	ls total today	0.7
Allowable Job		Time loaded 2:14 PM	wiixing revolu	110113	J	27	2707,917
Cement				F			
SUMTERVILLE		2370 amount-lbs	source	Туре		amount-lbs	5905
Slag	Туре	amount-ibs	Fine Aggrega			483,685) '
ARGOS	120	3535	16-659		4.20	12000	
source	Туре	amount-lbs	Pit num.		%moisture	amount-lbs	length of
Coarse Aggregate	#1	283.137	Air admixture				
10-645	2.00	14440	Euclid	AEA-92S brand	Type	amount-oz.	
Pit num.	%moisture	amount-lbs	source	brand	1,700		
Coarse Aggregate			Admixture Euclid	SE	D	621	
10-645 Pit num.	% moisture	amount-lbs	source	brand	Туре	amount-oz.	
	Lbs.	0.00 Gal.	Admixture				
Batch water	LDS.	Odi.	Euclid	6200		207	
Amount	173.00	1441.09	source	brand	Туре	amount	13 EL M. T.
	Gal	Lhs			#		
Issuance of this tic recorded in compli	ket constitute	s certification tha	t the concrete bations for Struc	oatched was produ tural	ided and in	formation	
recorded in compil	ance with be	partment opcomo					
CTQP Technician Ide	22011264050 entification nun			Signature of batch	plant oper	ator	
Arrival on jobsite	71	_		rolutions upon arriv			
Water added at job	site(gal or lb	s) A	Additional mix	ing revs. With add	ed water	121	
Time concrete com	pletely discha	argéd 323	Total number	of revolutions	19	B	
nitial slump		Initial air	Initial concrete	temp	Initial W/C	ratio 37	
Accept. Slump	1	Accept. Air	Accept. Concr		Accept W/	.31	
Issuance of this tick was not exceeded a requirements	et constitutes	certification that was delivered ar	the maximum d placed in col	specified water ce	mentitious	ratio	

Figure B.3 OC-13 concrete delivery ticket 3.

Financial Pro			KKEU MA	ATERIALS	5		
	Delive			uctural Co		е	
DOTE		438018	-1-52-01	Serial #		2237956 rember 4, 2021	
	Plant Number		-530 laterials, Inc.	Date Delivered to		CONTI LLC	
Conc	Phone #	#	Section 1971	Phone #		98 S & SR 570	
	Address:		ARDS AVE	Address:	HVVT	50 3 & SK 510	
		Laritte			AL	JBURNDALE	M. C.
Truck#	DOT class		DOT mix ID		Cubic yards		220.15
8439	CL IV 400	O Drilled Shaft Time loaded	01-14 Mixing revoluti	29-02SC ions	Cubic yards	9 s total today	2251.67
Allowable Jobsi	25.00	2:35 PM	IVIIAIII G TEVOIULI	Olia	,	36	2237.65
Cement		0000	- 1	F	1		7 . 7 .
SUMTERVILLE	Type Type	2385 amount-lbs	source	Туре		amount-lbs	
Slag	1,900	dinouncios	Fine Aggregate			507.36	
ARGOS	120	3550	16-659		4.20 %moisture	12080 amount-lbs	
source	Туре	amount-lbs	Pit num.		1%moisture	amount-ios	
Coarse Aggregate	#1	299.2	Air admixture				
10-645	2.00	14460 amount-lbs	Euclid source	AEA-92S brand	Туре	6 amount-oz.	
Pit num.	%moisture	amount-ibs	Source	brand	1,700		
Coarse Aggregate			Admixture Euclid	SE	l D I	621	
10-645 Pit num.	% moisture	amount-lbs	source	brand	Туре	amount-oz.	
		0.00	Admixture				
CE Batch water	Lbs.	Gal.	Euclid	6200		204	
mount	470.00	1441.09	source	brand	Туре	amount /	
	173.00 Gal.	Lhe					
ssuance of this tick ecorded in complia	et constitute	s certification tha	at the concrete batters for Struct	atched was produ	iced and info	ormation	
ecorded in compliai	nce with Dep	artment specific	anona for otracti	arai oonoroto	-//		
	0079063212						
TQP Technician Ider rrival on jobsite		DEI	Number of revo	olutions upon arriv	val at job site	9 01	
	325	2)	Additional mivir	ng revs. With add	led water	91	- 1
later added at job s	0	\			- 3		Te Park In
me concrete comp	340		Total number o		141		14.84
itial slump		Initial air	Initial concrete to		Initial W/C r		
ccept. Slump	ľ	Accept. Air	Accept. Concre	ite temp	Accept W/C	ratio 38	The state of the s
suance of this ticke as not exceeded an quirements	t constitutes of the batch	certification that was delivered a	t the maximum s nd placed in com	specified water ce	ementitious r	ratio	

Figure B.4 OC-13 concrete delivery ticket 4.

		PREFE	RRED M	ATERIALS	5		
	Delive	rv Ticke	t for Stru	uctural Co	oncret	е	
Financial Pro		438018-	1-52-01	Serial # Date		2237958 ember 4, 2021	
	Plant Number crete supplier	16-		Delivered to		CONTILLC	
Conc	Phone #			Phone # Address:	HWY	98 S & SR 570	
	Address:	255 EDAW		Address.			
					AL	JBURNDALE	
			T : 1D		Cubic yards	s this load	
Truck # 8484	DOT class	0 Drilled Shaft		129-02SC		9	4
Allowable Jobs	ite Water	Time loaded 3:12 PM	Mixing revolut	ions	Cubic yards	total today 45	
17.00 Cement		3.12 FW		-			2232.45
SUMTERVILLE	TYPEIL	2385		F Type		amount-lbs	2232.45 5910
source	Туре	amount-lbs	source Fine Aggrega			507.36	7-110
Slag ARGOS	120	3525	16-659		4.20	12080 amount-lbs	
source	Туре	amount-lbs	Pit num.		%moisture	amount-ibs	
Coarse Aggregate	#1	254	Air admixture		1	6	
10-645	2.00 %moisture	amount-lbs	Euclid source	AEA-92S brand	Туре	amount-oz.	
Pit num.		amount iso	Admixture				
Coarse Aggregate 10-645	#2		Euclid	SE	D	621 amount-oz.	
Pit num.	% moisture	amount-lbs 0.00	source	brand	Туре	amount-oz.	
CE	Lbs.	Gal.	Admixture	6200		210	
Batch water Amount			Source Source	brand	Туре	amount	
	173.00 Gal.	1441.09 Lbs.					
ssuance of this tic	leat constituto	s certification the	at the concrete l	patched was produ	iced and inf	ormation	
ecorded in complia	ance with De	partment specific	allons for Struc	turar conorete	. 11 21		
CTQP Technician Ide	20079063212 entification nun	nber					_
Arrival on jobsite	356		Number of rev	volutions upon auti	val at job sit	115	
Vater added at job	site(gal or lb	s)	Additional mix	ing revs. With add	led water		
Time concrete com	pletely discha	arged	Total number	of revolutions	-	117	177
	4/3	Initial air	Initial concrete	temp	Initial W/C	ratio	-
nitial slump					and the state of t		
Accept. Slump	_	Accept. Air	Accept. Concr		Accept W/0	_38	
ssuance of this tick	cet constitute:	s certification tha	t the maximum	specified water ce	ementitious	ratio	
vas not exceeded a	and the batch	was delivered a	na piacea in co			ation	
	1071	24/1	(5)				

Figure B.5 OC-13 concrete delivery ticket 5.

		PREFE	RRED M	ATERIALS	5		
	Deliv	ery Ticke	t for Str	uctural Co	oncret	е	-
		438018- r 16- r Preferred M	1-52-01 530 aterials, Inc.	Serial # Date Delivered to Phone # Address:	Nov	2237960 ember 4, 2021 CONTI LLC 98 S & SR 570	
					AL	IBURNDALE	
Truck # 8472	DOT class	0 Drilled Shaft	DOT mix ID	129-02SC	Cubic yards	this load	
Allowable Jobs 19.00	ite Water	Time loaded 3:46 PM	Mixing revolut		Cubic yards	total today 54	
Cement SUMTERVILLE	TYPEIL	2385		F			2216.17 5910
source	Туре	amount-lbs	source	Туре		amount-lbs	5910
Slag ARGOS	120	3525	Fine Aggregat 16-659	e	4.20	509.66 12140	
source	Туре	amount-lbs	Pit num.		%moisture	amount-lbs	
Coarse Aggregate 10-645	#1 2.00	14260	Air admixture Euclid	AEA-92S		5	
Pit num.	%moisture	amount-lbs	Source	brand	Туре	amount-oz.	
Coarse Aggregate 10-645	0.00		Euclid	SE	D	621 amount-oz.	
Pit num.	% moisture	amount-lbs 0.00 Gal.	Source Admixture	brand	Туре	amount-oz.	
Batch water Amount	173.00	1441.09	Euclid source	6200 brand	Туре	210 amount	
ssuance of this tick	Gal. cet constitute	Lbs.	t the concrete b	atched was produ	ced and info	rmation	
	0079063212						
rrival on jobsite	129		Number of revo	olutions upon arriv	al at job site	98	
/ater added at job	site(gal or lb	<i>(</i> 9)		ng revs. With adde	ed water		
me concrete comp	450)	Total number o		14		
itial slump		Initial air	Accept. Concre		nitial W/C ra		-7 / 1-6
suance of this ticke	7					. 50	
suance of this ticked as not exceeded an quirements			d placed in con		mentitious ra	entative	

Figure B.6 OC-13 concrete delivery ticket 6.

	Delive	ry Ticke	t for Stri	uctural C	oncret	e	
Financial Pr	Financial Project Number 438018-			Serial #		2237962	
	Plant Number	16- Preferred M		Date Delivered to		vember 4, 2021 CONTI LLC	
Cone	crete supplier Phone #	Preferred W	ateriais, inc.	Phone #			
	Address:	255 EDAW		Address:	HW	Y 98 S & SR 570	
		LAKE	LAND				
					A	UBURNDALE	
Truck #	DOT class		DOT mix ID		Cubic yard	s this load	
9112 Allowable Jobs		Drilled Shaft Time loaded	01-14 Mixing revolut	ions	Cubic yard	s total today	rabil 67
Allowable Jobs 24.00		4:13 PM	INITING TO VOICE		,	62	1964.62 5245
Cement	I	0.00		F	1		F248
SUMTERVILLE	TYPEIL	2105 amount-lbs	source	Туре		amount-lbs	1211
source Slag	Туре	amount-ibs	Fine Aggregat			428.868	
ARGOS	120	3140	16-659		4.20	10640	
source	Туре	amount-lbs	Pit num.		%moisture	amount-lbs	-
		222 011	Air admixture				
Coarse Aggregate 10-645	2.00	252.941	Euclid	AEA-92S		6	
Pit num.	%moisture	amount-lbs	source	brand	Туре	amount-oz.	-
Coarse Aggregate	#2		Admixture				1
10-645	0.00		Euclid	SE	D	555 amount-oz.	
Pit num.	% moisture	amount-lbs 0.00	source	brand	Туре	amount-oz.	
ICE	Lbs.	Gal.	Admixture	0000	1	183	
Batch water			Euclid source	6200 brand	Туре	amount	
Amount	154.00	1282.82				1	
Issuance of this tick	Gal.	Lbs.	t the concrete b	atched was produ	iced and inf	ormation	
recorded in complia	ance with Dep	artment specific	ations for Struct	ural Concrete		///	
	0079063212					777	
CTQP Technician Ide				Signature or pater	piant open	70.	1
Arrival on jobsite	51	05:	Number of rev	olutions upon arriv	val at job sit	2	
Nater added at job	site(gal or lbs	1 1	Additional mixi	ng revs. With add	ed water		1
			Total number of	of revolutions	1 0	0	-
Time concrete comp	oletely discha	56	Total Humber C		18	7	
nitial slump	7/0	nitial air	Initial concrete	emp	Initial W/C	ratio	
Accept. Slump 9	251	Accept Air	Accept. Concre	ete temps DE	Accept W/0	cratio , 37	
ssuance of this tick	et constitutes	certification that	the maximum :	specified water ce	mentitious	ratio	•
vas not exceeded a	nd the batch	was delivered ar	nd placed in cor	np		on	
cry	5272	475	(7)-				_
CTQP Technician Id	lentification n	umber	1	Signature of contra	actors repre	esentative	

Figure B.7 OC-13 concrete delivery ticket 7.

		PREFER	─***- RED MA	ATERIALS	3		
	Delive	ry Ticke	for Stru	ictural Co	oncret	е	
	oject Number Plant Number	438018-		Serial #	Nov	2237964 vember 4, 2021	
	crete supplier	Preferred Ma		Delivered to Phone #		CONTI LLC	
	Address:	255 EDAW/		Address:	HWY	7 98 S & SR 570	
		LAKE	AND		Al	UBURNDALE	
Truck#	DOT class		DOT mix ID		Cubic yard	s this load	
9122	CL IV 400	Drilled Shaft		29-02SC	Cubic yard	s total today	
Allowable Jobs 15.00		Time loaded 4:59 PM	wiixing revoluti	12	Oubio yaiu	66	
Cement	TVPE	4055	1	F			
SUMTERVILLE	TYPE I L Type	1055 amount-lbs	source	Туре		amount-lbs	
Slag	1,100	dinount-iba	Fine Aggregat			214,434	
ARGOS	120	1560	16-659		4.20	5320	/
source	Туре	amount-lbs	Pit num.		%moisture	amount-lbs	732.6
Coarse Aggregate	#1	124,467	Air admixture	AEA-92S		3	732.6
Pit num.	%moisture	amount-lbs	source	brand	Туре	amount-oz.	200
	40		Admixture				
Coarse Aggregate 10-645	#2		Euclid	SE	D	276	
Pit num.	% moisture	amount-lbs	source	brand	Туре	amount-oz.	
CE	Lbs.	0.00 Gal.	Admixture				
Batch water			Euclid	6200	-	93	
Amount	47.00	391.51	source	brand	Туре	amount	
	Gal	Lbs				4	
ssuance of this tic recorded in compli	ket constitute ance with De	s certification that partment specific	at the concrete bations for Struct	eatched was produ tural Concrete	iced and in	damation	
	20079063212						
CTQP Technician Id Arrival on jobsite	entification num	4Z		olutions upon arri	/	te //9	
Water added at job	site(gal or lb	(s)	Additional mix	ing revs. With add	léd water		
Time concrete con	pletely disch	arged 550	Total number	of revolutions	72	182	
nitial slump		Initial air	Initial concrete	temp	Initial W/C		
Accept. Slump (9,5	Accept. Air	Accept. Concr		Accept W/	+20	
ssuance of this tic was not exceeded equirements	and the batch	was delivered a	nd placed in co	specified water complete in the specified water complete in the specified water control water contro		n	

Figure B.8 OC-13 concrete delivery ticket 8.

PREFERRED MATERIALS										
	Delive	ry Ticke	t for Stru	uctural Co	oncrete)				
		438018-	1-52-01	Serial #		2237966				
	Plant Number acrete supplier			Date Delivered to		onti LLC				
Cor	Phone #			Phone #		00 C 0 CD 570				
	Address:	255 EDAW.		Address:	HWY	98 S & SR 570				
		LAKE	LAND		AU	BURNDALE				
ruck # 9112	DOT class	0 Drilled Shaft	DOT mix ID 01-14	29-02SC	Cubic yards	6				
Allowable Job	site Water	Time loaded	Mixing revolut		Cubic yards	total today 72				
cement 24.00	0	6:06 PM				12				
SUMTERVILLE	TYPEIL	1580		F						
ource	Туре	amount-lbs	source	Туре		amount-lbs				
lag	1		Fine Aggregat	le I	4.20	8000				
ARGOS	Type	2360 amount-lbs	16-659 Pit num.		%moisture	amount-lbs				
ouroc	1 .750									
coarse Aggregate 10-645	2.00	9660	Air admixture Euclid	AEA-92S	1	4				
it num.	%moisture	amount-lbs	source	brand	Туре	amount-oz.				
Coarse Aggregate	2 #2		Admixture							
10-645	0.00		Euclid	SE	D	414				
it num.	% moisture	amount-lbs 0.00	source	brand	Туре	amount-oz.				
CE	Lbs.	Gal.	Admixture	6200	1	138				
atch water mount			Euclid source	6200 brand	Туре	amount				
mount	70.00	583.10								
suance of this tie	Gal.	Lbs.	t the concrete b	atched was produ	ced and info	rmation				
ecorded in compl	iance with De	partment specific	ations for Struct	tural Concrete	//					
	20079063212									
TQP Technician Id	lentification nun	nber	Number of roy	olutions upon arriv	al at joh site					
rrival on jobsite	64	6			/	10/				
/ater added at jo	b site(gal or lb	s) (5)	Additional mixi	ing revs. With add	ed water	,				
me concrete con	npletely discha	arged	Total number of	of revolutions						
		7:07 Initial air	Initial concrete	temp	Initial W/C ra	atio				
itial slump		Accept. Air	Accept. Concre		Accept W/C	ratio ~ 👄				
itial slump	1.00					120				
ccept. Slump		s certification tha	t the maximum	specified water ce	mentitious ra	n n				
ccept. Slump	ket constitutes and the batch	was delivered a	nd placed in col							

Figure B.9 OC-13 concrete delivery ticket 9.

Ash Grove Sumterville Plant

Portland Cement Type IL (13) - Silo 2

September Mill Certificate

Production Period: 8/1/2021 To 8/31/2021

			STANDARD REQUIREMENTS		
Chemical	Data		Physical Data		
Item	Spec. Limit	Results	Item	Spec. Limit	Results
SiO ₂ (%)	A	18.9	Air Content of mortar (volume %)	12 max	5
Al ₂ O ₃ (%)	A	4.7	Blaine fineness (m ² /kg)**	A	516
Fe ₂ O ₃ (%)	A	3.0	Autoclave expansion (%)	-0.20 min/0.80 max	0.01
CaO (%)	A	62.3	Fineness, retained in #325	A	2.4
MgO (%)	A	0.9	Compressive strength (MPa/[psi]):		
SO ₃ (%)*	3.0 max	2.5	1 day		12.2[1770]
Loss of ignition (%)	10.0 max	7.0	3 days	13.0[1890] min	22.9[3319]
Na2O (%)	A	0.10	7 days	20.0[2900] min	29.6 [4299]
K2O (%)	A	0.21	28 days (previous month)	28.0[4060] min	42.0 [6090]
Insoluble residue (%)	A	0.73	Time of setting (minutes)		
CO ₂ (%)	A	5.5	(Vicat) Initial	45 min	97
Limestone (%)	15.0 max	13.1	(Vicat) Final	375 max	219
CaCO ₃ in limestone (%)	70 min	85	Sulfate Resistance (ASTM C1012 180d) (%)	0.10 max	0.05
Inorganic process addition (%)	5.0 max	-	Heat of hydration (ASTM C1702 3d, J/g [cal/g]	В	285 [67]
			Mortar Bar Expansion (ASTM C1038) (%)*	0.020 max	0.003
			OPTIONAL REQUIREMENTS		
Item	Spec. Limit	Results	Item	Spec. Limit	Results
Equiv. Alkalies (%)	0.60 max	0.24	Density (ASTM C188) (g/cm ³)	B	3.05
Chloride (%)	B	0.004	W 0 V W 1		
			Additional Data		
Туре	Limestone		Inorganic Processing Addition		
Amount	13.1		-		
SiO ₂ (%)	8.0				
Al ₂ O ₃ (%)	0.6				
Fe ₂ O _{3 (%)}	0.2				
CaO (%)	49.9				
SO ₃ (%)	0.1				

This cement meets ASTM C595 and AASHTO M240 Specification for Type IL (MS) Portland Cement.

September 14, 2021 Sumterville Cement Plant Ash Grove 4750 E County Rd 470 Sumterville, Florida 33585

Tel: (352) 569-5393 - Fax: (352) 569-5397

Figure B.10 OC-13 Type IL cement Sumterville Plant mill certificate.

This cement also meets all applicable FDOT (Facility ID: CMT 40) specifications for Type IL cement.

^{*}It is permissible to exceed the max value for SO3 content, provided it is demonstrated by ASTM C1038 that the cement will not develop expansion exceeding 0.020% in 14 Days.

A Not applicable.

 $[\]ensuremath{\mathcal{B}}$ Test result represents most recent value and is provided for information only.

Ash Grove **Branford Plant**

Portland Cement Type IL (13)

Silos: 2, 4

November 2021 Mill Certificate Production Period: 10/1/2021 To 10/31/2021

		STAN	DARD REQUIREMENTS		
Chemical	Data		Physical D:	ıta	
Item	Spec. Limit	Results	Item	Spec. Limit	Results
SiO ₂ (%)	A	18.6	Air Content of mortar (volume %)	12 max	5
Al ₂ O ₃ (%)	A	4.6	Blaine fineness (m ² /kg)**	A	470
Fe ₂ O ₃ (%)	A	3.1	Autoclave expansion (%)	-0.20 min/0.80 max	0.03
CaO (%)	A	63.0	Fineness, retained in #325	A	1.2
MgO (%)	A	0.6	Compressive strength (MPa/[psi]):		
SO ₃ (%)*	3.0 max	2.9	1 day		15.5 [2240]
Loss of ignition (%)	10.0 max	5.7	3 days	13.0[1890] min	28.3 [4100]
Na2O (%)	A	0.13	7 days	20.0[2900] min	36.7 [5320]
K2O (%)	A	0.24	28 days (previous month)	28.0[4060] min	49.0 [7110
			Time of setting (minutes)		
CO ₂ (%)	A	4.4	(Vicat) Initial	45 min	94
Limestone (%)	15.0 max	11.2	(Vicat) Final	375 max	210
CaCO ₃ in limestone (%)	70 min	90	Sulfate Resistance (ASTM C1012 180d) (%)	0.10 max	0.05
Inorganic process addition (%)	5.0 max		Heat of hydration (ASTM C1702 3d)	B	286
			Mortar Bar Expansion (ASTM C1038) (%)*	0.020 max	0.001
		OPTI	ONAL REQUIREMENTS		
Item	Spec. Limit	Results	Item	Spec. Limit	Results
Equiv. Alkalies (%)	0.60 max	0.29	False Set (%)	50 min	75
Chloride (%)	B	0.01	Density (ASTM C188) (g/cm ³)	B	3.10
			Additional Data		
Type	Limestone		Inorganic Processing Addition		
Amount	11.2				
SiO ₂ (%)	5.3				
Al ₂ O ₃ (%)	0.6				
Fe ₂ O _{3 (%)}	0.2				
CaO (%)	51.1		_		
SO ₃ (%)	0.7				

This cement meets ASTM C595 and AASHTO M240 Specification for Type IL (MS) Portland Cement

Tel: (386) 935-5013 - Fax: (386) 935-5080

November 8, 2021 Branford Cement Plant Ash Grove 5117 U.S. Hwy 27 Branford, FL 32008

Zheng Liu **Quality Control Manager**

Figure B.11 OC-13 Type IL cement Branford Plant mill certificate.

This cement also meets all applicable FDOT (Facility ID: CMT 29), SCDOT, and NCDOT (Plant ID: CM69) specifications for Type IL cement

^{*}It is permissible to exceed the max value for SO3 content, provided it is demonstrated by ASTM C1038 that the cement will not develop expansion exceeding 0.020% in 14 Days

A Not applicable.

B Test result represents most recent value and is provided for information only.

C Test result is not yet available

TAMPA PLANT 2001 Maritime Boulevard Tampa, Florida 33605-6760 Phone: (813) 247-4831 Fax: (813) 247-5650

MILL TEST REPORT

November 2021

Month of Issue: Plant: Product: Silos: Tampa Plant
SuperCem (Slag Cement, ASTM C989 Grade 120), SLAG01
20, 22, 23, 25, 26
October 2021

Chemical Analysis	Results	ASTM C989 Specifications Grade 120
Aluminum Oxide (as Al ₂ O ₃), %	13.7	A
Equivalent Alkalies (Na ₂ O + 0.658 K ₂ O), %	0.46	A
Sulfide Sulfur (S), %	0.6	2.5 max.
Sulfate Sulfur (as SO ₃), %	1.1	A
Chloride (CI), %	0.000	A

Physical Analysis	Results	ASTM C989 Specifications Grade 120
Compressive Strength [®]		
7 Day (psi)	4110	A
28 Day (psi) ^c	6400	A A
Slag Activity Index, %		
7 Day	93	A
28 Day ^c	117	115 min
Fineness		
Blaine (m²/kg)	509	A
45 micron (% retained)	1.4	20 max
Air Content, %	4	12 max
Test Method C1038/C1038M Mortar Bar	0.010	0.020 max
Expansion, 14 day, %		
Density	2.85	A

⁴ Not applicable

The cement covered by this report complies with the current specifications for: ASTM G989 - 18: Grade 120 Slag Cement FDOT Section 929 and ASHTO M302 Ground Granulated Blast Furnace Slag (GGBFS) TNDOT, NCDOT, MDSHA, DEDOT, DCDOT, and VDOT: Grade 120 Slag Cement

Doug Kraszka - Quality Coordinator Report created: November 8, 2021

Figure B.12 OC-13 slag mill certificate.

⁸ Reference cement chemical and physical data furnished upon request

c Reflects previous month's data

Appendix C: I-4 Drilled Shaft OC-19 Construction Documents

PREFERRED MATERIALS									
	Delive	ry Ticket	for Str	ictural Co	oncrete				
Financial Project Number DOT Plant Number Concrete supplier Phone # Address: Address: 438018-1 Preferred Ma Phone # Address: LAKEL		1-52-01 i30 iterials, Inc.	Serial # Date Delivered to Phone # Address:	Noven CO SR 570 &	238539 aber 23, 2021 INTI LLC OLD DIXIE HWY URNDALE				
Truck #	DOT class	Drilled Shaft	DOT mix ID	29-02NC	Cubic yards t	his load 9			
8445 Allowable Jobs	te Water	Time loaded	Mixing revolut		Cubic yards t	otal today			
Cement	14.63	1:11 PM	Fly ash			,			
SUMTERVILLE	TYPEIL	2395	, , , , ,	F					
source	Туре	amount-lbs	source	Туре		amount-lbs			
Slag	1 400	2545	Fine Aggrega 16-659	ite	3.90	11900			
ARGOS	Type	3545 amount-lbs	Pit num.		%moisture	amount-lbs			
Coarse Aggregate 10-645 Pit num.	1.90 %moisture	14540 amount-lbs	Air admixture Euclid source	AEA-92S brand	Туре	5			
Coarse Aggregate 10-645	#2		Admixture Euclid	SE	D	531			
Pit num.	% moisture	amount-lbs	source	brand	Туре	amount-oz.			
ICE	Lbs.	0.00 Gal.	Admixture						
Batch water	200.	-	Euclid	6200	Tura	207			
Amount	192.00 Gal.	1599.36 Lbs.	source	brand	Туре	amount			
CTQP Technician Ide Arrival on jobsite	ket constitute: ance with Dep 20079063212 entification num	ber	Number of re	S volutions upon arri	ival at job site				
Water added at job Time concrete con		7	Total number	of revolutions	J-	77			
Initial slump Accept. Slump	9.25	Initial air 3. 1 Accept. Air	Initial concrete Accept. Conc	1)	Initial W/C ra	137			
Issuance of this tick was not exceeded requirements CTQP Technician I	and the batch	was delivered a	at the maximum and placed in	specified water, of Signature of control		cation			

Figure C.1 OC-19 concrete delivery ticket 1.

Financial Project Numi DOT Plant Numi Concrete supp Phon Addres	per 16- per Preferred M: ## 255 EDWA LAKE LAKE SS 0000 Drilled Shaft Time loaded 1:20 PM	1-52-01 530 aterials, Inc. RDS AVE LAND	Serial # Date Delivered to Phone # Address:	Nove C	2238540 mber 23, 2021 ONTI LLC OLD DIXIE HWY BURNDALE this load
Financial Project Numi DOT Plant Numi Concrete supp Phon Addres ick # DOT clas 8472 CL IV 4 Allowable Jobsite Water 15.03 ment UMTERVILLE TYPE I urce Type ag ARGOS 120	per 438018- per 16- per 16- Preferred M. 255 EDWA LAKE SS 0000 Drilled Shaft Time loaded 1:20 PM L 2370 amount-lbs	I-52-01 530 aterials, Inc. IRDS AVE LAND DOT mix ID 01-14 Mixing revolut	Serial # Date Delivered to Phone # Address:	SR 570 &	2238540 mber 23, 2021 ONTI LLC OLD DIXIE HWY BURNDALE this load
DOT Plant Numi Concrete supp Phon Addres ick # DOT clas 8472 CL IV 4 Allowable Jobsite Water 15.03 ment UMTERVILLE TYPE I urce Type ag ARGOS 120	Preferred M: e # ss: 255 EDWA LAKE SS: 0000 Drilled Shaft Time loaded 1:20 PM L 2370 amount-lbs	LAND DOT mix ID 01-14 Mixing revolut	Delivered to Phone # Address:	SR 570 &	OLD DIXIE HWY BURNDALE this load
Phon Addres ICK # DOT clas 8472	S 255 EDWA LAKE S 000 Drilled Shaft Time loaded 1:20 PM L 2370 amount-lbs	LAND DOT mix ID 01-14 Mixing revolut	Phone # Address:	SR 570 &	OLD DIXIE HWY BURNDALE this load 9
Address ack # DOT class 8472	SS 255 EDWA LAKE SS 0000 Drilled Shaft Time loaded 1:20 PM L 2370 amount-lbs	DOT mix ID 01-14 Mixing revolut	129-02NC	AUI Cubic yards	BURNDALE this load
## ARGOS 120 ARGOS CL IV 4 ARGOS CL IV	Time loaded 1:20 PM L 2370 amount-lbs	DOT mix ID 01-14 Mixing revolut		Cubic yards	this load
## ARGOS 120 ARGOS CL IV 4 ARGOS CL IV	Dood Drilled Shaft Time loaded 1:20 PM L 2370 amount-lbs	01-14 Mixing revolut		Cubic yards	this load
## ARGOS 120 ARGOS CL IV 4 ARGOS CL IV	Dood Drilled Shaft Time loaded 1:20 PM L 2370 amount-lbs	01-14 Mixing revolut			9
## ARGOS 120 ARGOS CL IV 4 ARGOS CL IV	Dood Drilled Shaft Time loaded 1:20 PM L 2370 amount-lbs	01-14 Mixing revolut			9
Allowable Jobsite Water 15.03 ment UMTERVILLE TYPE I urce Type ag ARGOS 120	Time loaded 1:20 PM L 2370 amount-lbs	Mixing revolut		Cubic yards	total today
ment UMTERVILLE TYPE I urce Type ag ARGOS 120	L 2370 amount-lbs	Fly ash			
UMTERVILLE TYPE I urce Type ag ARGOS 120	amount-lbs	Fly ash			18
ag ARGOS 120	amount-lbs		F	1 1	
ARGOS 120		source	Type		amount-lbs
ARGOS 120	2540	Fine Aggrega			
urce Type	3540	16-659		3.90	11940
	amount-lbs	Pit num.		%moisture	amount-lbs
B		Air admixture			
10-645 1.90	14280	Euclid	AEA-92S		6
num. %moistu		source	brand	Туре	
A		Admixture			
arse Aggregate #2 10-645		Euclid	SE	D	534
num. % moistu		source	brand	Туре	amount-oz.
E Lbs.	0.00 Gal.	Admixture			
tch water	Odii	Euclid	6200		207
nount 192.0	1599.36	source	brand	Type	amount
Gal	Lbs.				,
uance of this ticket consti	tutes certification th	at the concrete	batched was produ	uced and info	rmation
corded in compliance with	Department specific	ations for Struc	curai Concrete		
P20079063					
QP Technician Identification	number	Number of res	Signologian Signol	val at inh site	1.7
rival on jobsite	210				11/
ater added at job site(gal	or lbs)	Additional mix	king revs. With add	led water	
me concrete completely di	scharged at 1	Total number	of revolutions	10	A
contained dempireday di	001			17	B
tial slump	Initial air	Initial concrete	temp	Initial W/C ra	itio
cept. Slump C	Accept-Air	Accept. Conci	rete temp	Accept W/C	ratio 25
7.0	5.3		130		12/
uance of this ticket consti s not exceeded and the b	tutes certification th	at the maximum and placed in co	n specified water o	ementitiqus r	atio
guirements PUCS	72 UZA	and placed in Co	omphanoe wi		
~ 132	24/9	-(2)	0: 1	_	
QP Technician Identificat	on number	0	Signature of cont	ractors repres	sentative

Figure C.2 OC-19 concrete delivery ticket 2.

		PREFER	RED M	ATERIALS	3	
	Delive	ry Ticket	for Str	uctural Co	oncrete	
Financial Pro	ject Number	438018-		Serial #		2238541
DOT F	lant Number	16-5		Date		mber 23, 2021
Conc	rete supplier	Preferred Ma	terials, Inc.	Delivered to Phone #		ONTI LLC
	Phone # Address:	255 EDWA	RDS AVE	Address:		OLD DIXIE HWY
	Address.	LAKEL				
	,				AUE	BURNDALE
Truck #	DOT class		DOT mix ID		Cubic yards	
9112 Allowable Jobs		Drilled Shaft Time loaded		429-02NC	Cubic yards	9 total today
Allowable Jobs 14.31		1:35 PM	Mixing revolu	illotta	Cubic yards	27
Cement			Fly ash		2) pa-	
SUMTERVILLE	TYPEIL	2365		F		All the second
source	Туре	amount-lbs	source	Туре		amount-lbs
Slag	1		Fine Aggreg	ate	2.00	44000
ARGOS	Type	3530 amount-lbs	16-659 Pit num.		%moisture	11960 amount-lbs
300106	Туре	amount-ibs	FR HUIII.		Minoisture	umount-100
Coarse Aggregat	e #1		Air admixture			
10-645	1.90	14560	Euclid	AEA-92S		6
Pit num.	%moisture	amount-lbs	source	brand	Туре	
Coarse Aggregat	e #2		Admixture			
10-645	0/	and the	Euclid	SE brand	D	531 amount-oz.
Pit num.	% moisture	amount-lbs 0.00	source	Dianu	Туре	amount-oz.
ICE	Lbs.	Gal.	Admixture			
Batch water Amount			Euclid source	6200 brand	Type	207 amount
Amount	192.00	1599.36	Source	Diana	Туре	amount
	Gal.	Lbs.				
Issuance of this tic recorded in compli	ket constitute	s certification that	at the concrete ations for Stru	batched was productural Concrete	uced and info	rmation
redoraca iii dompii	ando mar bo	Santinoni Spesific				
	20079063212					
CTQP Technician Id Arrival on jobsite	entification nun		Number of re	volutions upon arri	val at job site	1,0
		230			/	119
Water added at jol	o site(gal or lb	s)	Additional mi	xing revs. With add	ded water	
Time concrete cor	npletely disch	arged 303	Total number	r of revolutions	15	38
Initial slump		Initial air	Initial concret	tı temp	Initial W/C ra	
Accept. Slump 9	75	Accept. Air	Accept. Cond	crete temp	Accept W/C	ratio 139
ssuance of this tic	ket constitute	s certification that	t the maximur	n specified water c	ementitious ra	atio
was not exceeded						
requirements W	45277	479	(9		
CTQP Technician	Identification	number	10	Signature of cont	ractors repres	entative
		MI COUNTY OF THE PARTY OF THE P	151	0		

Figure C.3 OC-19 concrete delivery ticket 3.

		PREFE	RREDM	ATERIALS	6		
	Delive	ry Ticke	t for Str	uctural C	oncrete)	
DOT P	Financial Project Number DOT Plant Number Concrete supplier Phone # Address: Address: 438018- Preferred Ma Preferred Ma 255 EDWA LAKEL		1-52-01 530 aterials, Inc.	Serial # Date Delivered to Phone # Address:	November 23, 2021 CONTI LLC		
		0 Drilled Shaft Time loaded 1:48 PM	Mixing revolu	429-02NC tions	Cubic yards Cubic yards	9	
Cement SUMTERVILLE	TYPEIL	2430	Fly ash	F			
source	Туре	amount-lbs	source	Туре		amount-lbs	
Slag	100	2550	Fine Aggrega 16-659	ate	3.90	11960	
ARGOS source	Type	3550 amount-lbs	Pit num.		%moisture	amount-lbs	
	and a		Air admixture				
Coarse Aggregate 10-645	1.90	14380	Euclid	AEA-92S		6	
Pit num.	%moisture	amount-lbs	source	brand	Туре		
Coarse Aggregate	#2		Admixture		- 1		
10-645 Pit num.	% moisture	amount-lbs	Euclid source	SE brand	D Type	534 amount-oz.	
		0.00		Diana	.,,,,,		
CE Batch water	Lbs.	Gal.	Admixture Euclid	6200		207	
Amount			source	brand	Туре	amount	
	192.00 Gal.	1599.36 Lbs.					
ssuance of this tick	cet constitute	es certification the			iced and info	mation	
ecorded in complia	ance with De	partment specific	ations for Struc	ctural Concrete			
	0079063212						
CTQP Technician Ide Arrival on jobsite	entification nur	nber	Number of rev	S volutions upon arri	val at/iob site	to =	
Nater added at job	site(gal or lh	90 (s) 8		lumber of revolutions upon arrival at job site 125			
			100000000000000000000000000000000000000				
Time concrete com	pietely disch	290		of revolutions	201		
nitial slump		Initial air	Initial concrete	temp	Initial W/C ra	tio	
Accept. Slump 9	15	Accept. Air	Accept. Conci	rete temp	Accept W/C	ratio , 39	
7	ind the batch	s certification that was delivered a	at the maximum	specified water co	ementitious ra	t 5 /	

Figure C.4 OC-19 concrete delivery ticket 4.

Figure C.5 OC-19 concrete delivery ticket 5.

Pinancial Project Number	DOT	Daline		KRED M	ATERIALS	3	
Financial Project Number DOT Plant Number Concrete supplier Proferred Materials, Inc. Phone # Address: DOT class CL V 4000 Drilled Shaft	DOT	Delive			100		9
Concrete supplier Phone # Address: Phone # Address: Preferred Materials, Inc. Phone # Address: SR 570 & OLD DIXI		roject Number					
Phone # Address: 255 EDWARDS AVE LAKELAND AUBURNDALI Truck # Address: SR 570 & OLD DIXI AUBURNDALI AUBURNDALI AUBURNDALI Truck # Address: SR 570 & OLD DIXI AUBURNDALI	Col	DOT Plant Number 16-					
LAKELAND AUBURNDALE AUBURNDALE Tuck # DOT class				ateriais, inc.	resemble to be a service service service		ONTILLO
AUBURNDALI Truck # DOT class	Address: 255 EDW/			Address:	SR 570 & OLD DIXIE HWY		
Allowable Jobsite Water 14.39 Time loaded 2:38 PM 14.39 Type III 1560 Fly ash SUMTERVILLE TYPE I 1 1560 Fly ash Surce Type amount-lbs source Type amount-lbs Pit num. Searce Aggregate #1 10-645 1.90 11280 Euclid AEA-92S 4 Admixture 10-645 Moisture amount-lbs source brand Type a			LAND		AUBURNDALE		
Allowable Jobsite Water 1 Time loaded 14.39 2:38 PM 2:38 PM 52 Jement 2:38 PM 552 Jement 3:39 PM 552 Jement 3:39 PM 552 Jement 5:38 PM 552 Jement 5:38 PM 552 Jement 5:38 PM 552 Jement 6:38 PM 552 Jement 7:38 PM 562 Jement 7:38 PM 562 Jement 7:38 PM 562 Je	uck#	DOT class		DOT mix ID		Cubic yards	this load
rement SUMTERVILLE TYPE IL JEGO Fly ash SUMTERVILLE TYPE IL JEGO Fly ash Fly ash Fly ash SUMTERVILLE TYPE IL JEGO Fly ash Fly amount Air admixture Euclid AEA-92S Admixture Euclid SE D 444 Admixture Euclid S	8439					7	
Fly ash SUMTERVILLE TYPE IL DUICCE Type amount-lbs source Type amount Bag ARGOS 120 2755 16-659 3.90 934 DUICCE Type amount-lbs Pit num. %moisture amount Boarse Aggregate #1 10-645 1.90 11280 Euclid AEA-92S 4 Tit num. %moisture amount-lbs source brand Type Coarse Aggregate #2 10-645 2				Mixing revolut	tions	Cubic yards	total today
Durce Type amount-lbs source Type amount ARGOS 120 2755 16-659 3.90 934 Ource Type amount-lbs Pit num. %moisture amount Pit num. %moisture amount Pit num. %moisture amount Pit num. %moisture amount-lbs source brand Type Arit num. %moisture amount-lbs source brand Type Admixture Euclid SE D 414 Admixture Euclid SE D 414 Admixture Euclid SE D 414 Admixture Euclid SE D 415 Source brand Type amount Pit num. %moisture amount-lbs source brand Type amount DE Lbs. Gal. Admixture Euclid 6200 159 Source brand Type amount Admixture Euclid 6200 159 Source brand Type amount DE CE Lbs. Gal. Admixture Euclid 6200 159 Source brand Type amount DE CE Lbs. Gal. Admixture Euclid 6200 159 Source brand Type amount DE CE Lbs. Gal. Lbs. Source brand Type amount DE CE Lbs. Gal. Lbs. Source brand Type amount DE CE Lbs. Gal. Lbs. Source brand Type Admixture Euclid 6200 159 Source brand Type Amount DE CE Lbs. Gal. Lbs. Source brand Type Amount DE CE Lbs. Gal. Lbs. Source brand Type Amount DE CE Lbs. Gal. Lbs. Source brand Type Amount DE CE Lbs. Gal. Lbs. Source brand Type Amount DE CE Lbs. Gal. Lbs. Source brand Type Amount DE CE Lbs. Gal. Lbs. Source brand Type Amount DE CE Lbs. Gal. Lbs. Source brand Type Amount DE CE Lbs. Gal. Lbs. Source brand Type Amount DE CE Lbs. Gal. Lbs. Source brand Type Amount DE CE Lbs. Gal. Lbs. Source brand Type Amount DE CE Lbs. Gal. Lbs. Source brand Type Amount DE CE Lbs. Gal. Lbs. Source brand Type Amount DE CE Lbs. Gal. Lbs. Source brand Type Amount DE CE Lbs. Gal. Lbs. Source brand Type Amount DE CE Lbs. Gal. Lbs. Source Brand Type Admixture DE CE Lbs. Gal. Admixture D				Fly ash			
ARGOS 120 2755 16-659 3.90 934 Ource Type amount-lbs Pit num. %moisture amoun Coarse Aggregate #1 1.90 11280 Euclid AEA-92S 4 It num. %moisture amount-lbs source brand Type Coarse Aggregate #2 Admixture 10-645 8	SUMTERVILLE	TYPEIL					
ARGOS 120 2755 16-659 3.90 934 ource Type amount-lbs Pit num. %moisture amount loarse Aggregate #1 Air admixture 10-645 1.90 11280 Euclid AEA-92S 4 it num. %moisture amount-lbs source brand Type loarse Aggregate #2 Admixture 10-645 Euclid SE D 414 it num. %moisture amount-lbs source brand Type amount location with a source brand Type amount location with Department specifications for Structural Concrete P20079063212 TOP Technician Identification number Invival on jobsite Number of revolutions upon arrival at job site location locat	1911	Туре	amount-lbs				amount-lbs
Admixture Coarse Aggregate #1	_	1 400	7755		ate	3 00	9340
Air admixture 10-645 1.90 11280 Euclid AEA-92S 4 Admixture Euclid SE D 414 Admixture Euclid SE D 414 Admixture Euclid SE D Admixture Euclid Source D Admixture Euc				_			amount-lbs
10-645 1.90 11280 Euclid AEA-92S 4 it num. %moisture amount-lbs source brand Type Coarse Aggregate #2 Admixture Euclid SE D 414 it num. % moisture amount-lbs source brand Type amount CE Lbs. Gal. Admixture Euclid 6200 155 source brand Type amount 146.00 1216.18 Gal. Lbs. Gal. Lbs. Gal. Lbs. Gal. Lbs. Gal. Correcte batched was produced and information seconded in compliance with Department specifications for Structural Concrete P20079063212 TOP Technician Identification number rrival on jobsite Vater added at job site(gal or lbs) Additional mixing revs. With added water		.,,,,,					
iti num.				and the same of the same of the same	454 000		
Admixture 10-645 10-						Туре	4
Euclid SE D 414			amount 100				
it num.		te #2			l se	l n l	414
Lbs. Gal. Admixture latch water mount 146.00 1216.18 Gal. Lbs. Susuance of this ticket constitutes certification that the concrete batched was produced and information accorded in compliance with Department specifications for Structural Concrete P20079063212 TQP Technician Identification number rrival on jobsite Number of revolutions upon arrival at job site Additional mixing revs. With added water		% moisture	amount-lbs				amount-oz.
atch water mount 146.00				Adminton			
source brand Type amount 146.00		Lbs.	Gal.		6200		159
Gal. Lbs. Issuance of this ticket constitutes certification that the concrete batched was produced and information accorded in compliance with Department specifications for Structural Concrete P20079063212 TQP Technician Identification number rrival on jobsite Number of revolutions upon arrival at job site Additional mixing revs. With added water					brand	Туре	amount
suance of this ticket constitutes certification that the concrete batched was produced and information ecorded in compliance with Department specifications for Structural Concrete P20079063212 TOP Technician Identification number rrival on jobsite Number of revolutions upon arrival at job site Vater added at job site(gal or lbs) Additional mixing revs. With added water				-		-	
P20079063212 TOP Technician Identification number rrival on jobsite Vater added at job site(gal or lbs) Additional mixing revs. With added water	suance of this t	icket constitute	es certification th	at the concrete	batched was produ	uced and into	rmation
TOP Technician Identification number rrival on jobsite Number of revolutions upon arrival at job site 122	corded in comp	liance with De	partment specific	cations for Struc	ctural Concrete	//	
TOP Technician Identification number rrival on jobsite Number of revolutions upon arrival at job site 122		P20079063212	2				
Vater added at job site(gal or lbs) Additional mixing revs. With added water	TQP Technician			· · · · ·		/1 - A ! - b - ! b -	
1000 0000 00)00 0000 0000	rival on jobsite		319	Number of rev	volutions upon arm	vai at job site	122
Total number of revolutions	ater added at j	ob site(gal or lb	os) Ø	Additional mix	ring revs. With add	ded water	
ime concrete completely discharged	me concrete co	mpletely disch	arged	Total number	of revolutions	2-	35
itial slump Initial air Initial concreti temp Initial W/C ratio			Initial concrete temp		Initial W/C ratio		
ccept. Slump 9, 75 // Accept. Air Accept. Concrete temp Accept W/C ratio	1	. 15	2.17		740-		
isuance of this ticket constitutes certification that the maximum specified water cementitious ratio as not exceeded and the batch was delivered and placed in complications and the sequirements wyspecified water cementitious ratio and placed in complication of the sequirements wyspecified water cementitious ratio and placed in complication of the sequirements wyspecified water cementitious ratio and placed in complication of the sequirements with the maximum specified water cementitious ratio and sequirements with the sequirement of the se	as not exceede quirements	and the batch	n was delivered a	and placed in co	omplia		

Figure C.6 OC-19 concrete delivery ticket 6.

Ash Grove Sumterville Plant

Portland Cement Type IL (13) - Silo 2

December Mill Certificate

Production Period: 11/1/2021 To 11/30/2021

			STANDARD REQUIREMENTS		
Chemical 1	Data		Physical Data		
Item	Spec. Limit	Results	Item	Spec. Limit	Results
SiO ₂ (%)	A	18.3	Air Content of mortar (volume %)	12 max	.5
Al ₂ O ₃ (%)	A	4.7	Blaine fineness (m²/kg)**	A	505
Fe ₂ O ₃ (%)	A	3.1	Autoclave expansion (%)	-0.20 min/0.80 max	0.00
CaO (%)	A	62.4	Fineness, retained in #325	A	1.7
MgO (%)	A	0.9	Compressive strength (MPa/[psi]):		
SO ₃ (%)*	3.0 max	3.0	1 day		14.1 [2040]
Loss of ignition (%)	ss of ignition (%) 10.0 max 6.8 3 days		13.0[1890] min	24.7 [3580]	
Na2O (%)	A	0.12	7 days	20.0[2900] min	31.7 [4600]
K2O (%)	A	0.21	28 days (previous month)	28.0[4060] min	42.6[6180]
Insoluble residue (%)	A	0.60	Time of setting (minutes)		
CO ₂ (%)	A	5.3	(Vicat) Initial	45 min	93
Limestone (%)	15.0 max	14.0	(Vicat) Final	375 max	218
CaCO ₃ in limestone (%)	70 min	89	Sulfate Resistance (ASTM C1012 180d) (%)	0.10 max	0.05
Inorganic process addition (%)	5.0 max	~	Heat of hydration (ASTM C1702 3d, J/g [cal/g]	B	269 [64]
			Mortar Bar Expansion (ASTM C1038) (%)*	0.020 max	0.003
			OPTIONAL REQUIREMENTS		
Item	Spec. Limit	Results	Item	Spec. Limit	Results
Equiv. Alkalies (%)	iv. Alkalies (%) 0.60 max 0.26 Density (ASTM C188) (g/cm ³)		B	3.05	
Chloride (%)	В	0.002	State: See April 46		
			Additional Data		
Type Limestone		Inorganic Processing Addition			
Amount 14.0		-			
SiO ₂ (%) 6.6		-			
Al_2O_3 (%)	0.8				
Fe ₂ O _{3 (%)} 0.2					
CaO (%)	50.1		200		
SO ₃ (%)	0.1				

This cement meets ASTM C595 and AASHTO M240 Specification for Type IL (MS) Portland Cement.

December 20, 2021 Sumterville Cement Plant Ash Grove 4750 E County Rd 470 Sumterville, Florida 33585

Tel: (352) 569-5393 - Fax: (352) 569-5397

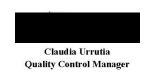


Figure C.7 OC-19 Type IL cement mill certificate.

This cement also meets all applicable FDOT (Facility ID: CMT 40) specifications for Type IL cement.

^{&#}x27;It is permissible to exceed the max value for SO3 content, provided it is demonstrated by ASTM C1038 that the cement will not develop expansion exceeding 0.020% in 14 Days.

A Not applicable.

B Test result represents most recent value and is provided for information only.

TAMPA PLANT 2001 Maritime Boulevard Tampa, Florida 33605-6760 Phone: (813) 247-4831 Fax: (813) 247-5650

MILL TEST REPORT

November 2021

Month of Issue: Plant: Product: Silos: Tampa Plant
SuperCem (Slag Cement, ASTM C989 Grade 120), SLAG01
20, 22, 23, 25, 26
October 2021

Chemical Analysis	Results	ASTM C989 Specifications Grade 120
Aluminum Oxide (as Al ₂ O ₃), %	13.7	A
Equivalent Alkalies (Na ₂ O + 0.658 K ₂ O), %	0.46	A
Sulfide Sulfur (S), %	0.6	2.5 max.
Sulfate Sulfur (as SO ₃), %	1.1	A
Chloride (CI), %	0.000	A

Physical Analysis	Results	ASTM C989 Specifications Grade 120
Compressive Strength [®]		
7 Day (psi)	4110	A
28 Day (psi) ^c	6400	A A
Slag Activity Index, %		
7 Day	93	A
28 Day ^c	117	115 min
Fineness		
Blaine (m²/kg)	509	A
45 micron (% retained)	1.4	20 max
Air Content, %	4	12 max
Test Method C1038/C1038M Mortar Bar	0.010	0.020 max
Expansion, 14 day, %		
Density	2.85	A

⁴ Not applicable

The cement covered by this report complies with the current specifications for: ASTM G989 - 18: Grade 120 Slag Cement FDOT Section 929 and ASHTO M302 Ground Granulated Blast Furnace Slag (GGBFS) TNDOT, NCDOT, MDSHA, DEDOT, DCDOT, and VDOT: Grade 120 Slag Cement

Figure C.8 OC-19 slag mill certificate.

⁸ Reference cement chemical and physical data furnished upon request

c Reflects previous month's data

Appendix D: N. Florida and Sinclair Hills Drilled Shaft Construction Documents

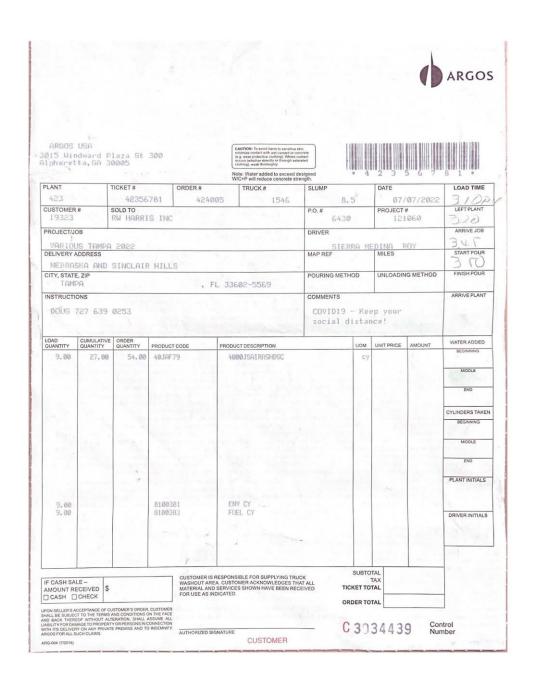


Figure D.1 Sinclair Hills drilled shaft concrete delivery ticket 1.

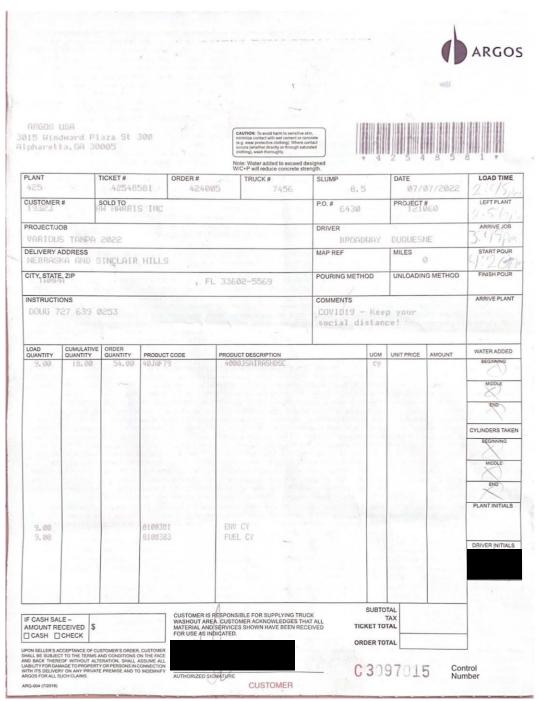


Figure D.2 Sinclair Hills drilled shaft concrete delivery ticket 2.

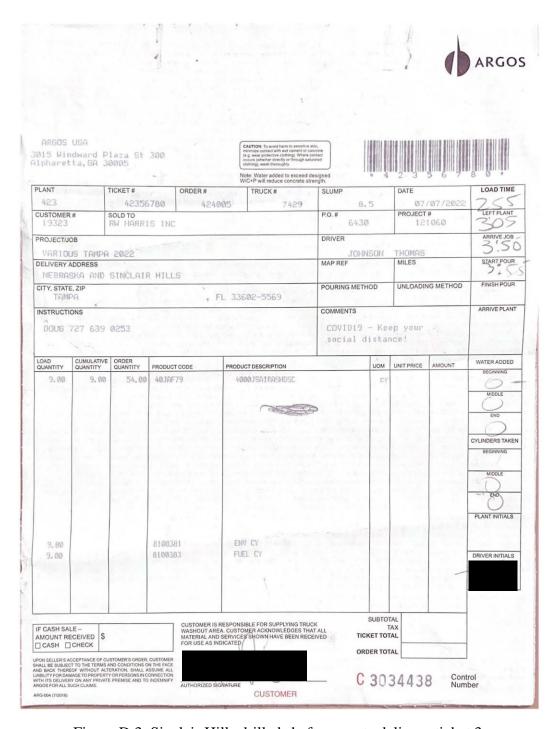


Figure D.3 Sinclair Hills drilled shaft concrete delivery ticket 3.

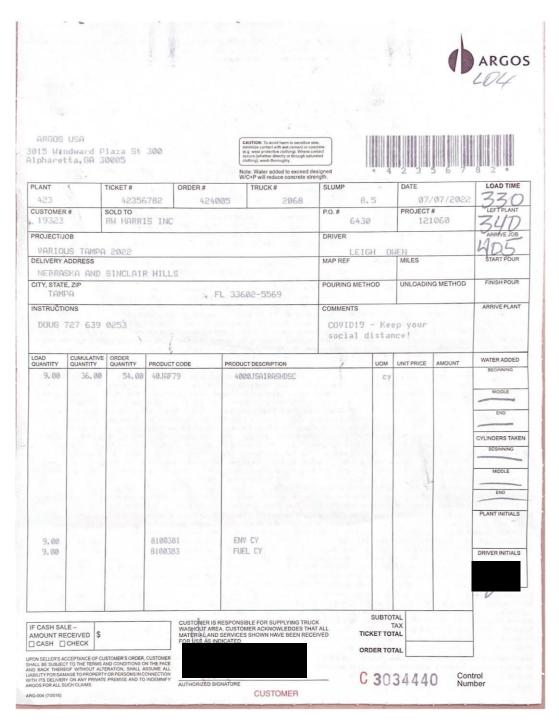


Figure D.4 Sinclair Hills drilled shaft concrete delivery ticket 4.

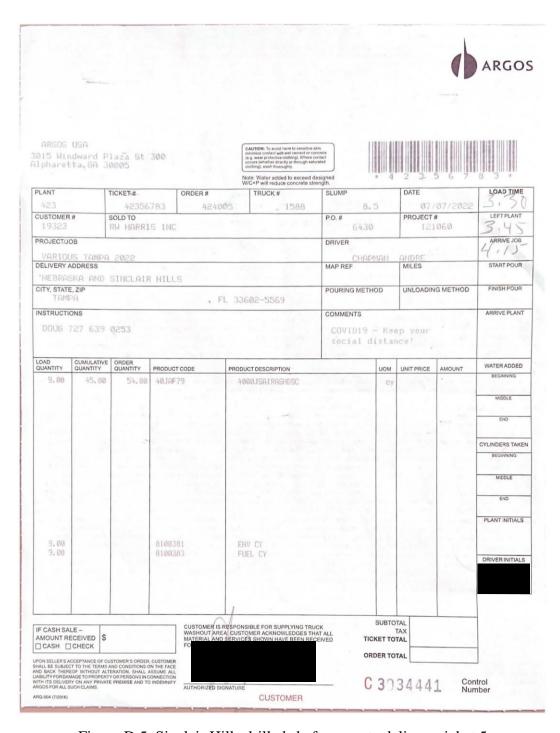


Figure D.5 Sinclair Hills drilled shaft concrete delivery ticket 5.

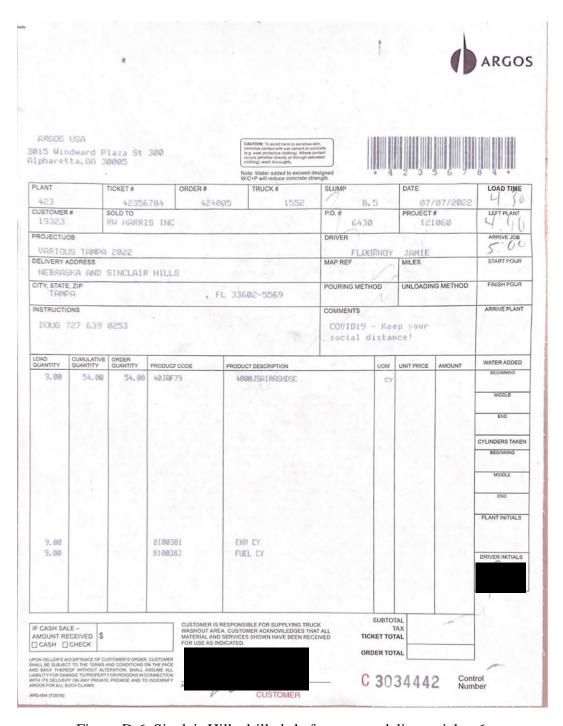


Figure D.6 Sinclair Hills drilled shaft concrete delivery ticket 6.

Letter Of Transmittal

07/11/2022 7:54:03AM Report 262507 (internal use only) Please use the **submittal number** located on the following pages when referring to the set of documents contained within this submittal.

The following items are included in this mix submittal: Submittal #71332 for Project: SINCLAIR HILLS AT E SIDEN FL AVE

Detailed Data for Submittal #71332

Fla_Argos Newberry Type IL Mill Certification 06-21.pdf attachment for Submittal #71332 for Project: SINCLAIR HILLS AT E SIDEN FL AVE

Fla_Argos Newberry Type IL PLC Data Sheet Florida.pdf attachment for Submittal #71332 for Project: SINCLAIR HILLS AT E SIDEN FL AVE

Fla_Argos Fly Ash Mill Certification 06-21.pdf attachment for Submittal #71332 for Project: SINCLAIR HILLS AT E SIDEN FL AVE

Fla_Darex AEA Data Sheet.pdf attachment for Submittal #71332 for Project: SINCLAIR HILLS AT E SIDEN FL AVE

Fla_Darex Certification 5-11-21.pdf attachment for Submittal #71332 for Project: SINCLAIR HILLS AT E SIDEN FL AVE

Fla_Recover Certification 5-11-21.pdf attachment for Submittal #71332 for Project: SINCLAIR HILLS AT E SIDEN FL AVE

Fla_Recover Data Sheet.pdf attachment for Submittal #71332 for Project: SINCLAIR HILLS AT E SIDEN FL AVE

Fla_WRDA 60 Certification 5-11-21.pdf attachment for Submittal #71332 for Project: SINCLAIR HILLS AT E SIDEN FL AVE

Fla_WRDA 60 Data Sheet.pdf attachment for Submittal #71332 for Project: SINCLAIR HILLS AT E SIDEN FL AVE

Fla_WRDA 60 Data Sheet.pdf attachment for Submittal #71332 for Project: SINCLAIR HILLS AT E SIDEN FL AVE

Fla_WRDA 60 Certification 5-11-21.pdf attachment for Submittal #71332 for Project: SINCLAIR HILLS AT E SIDEN FL AVE

Fla_WRDA 60 Certification 5-11-21.pdf attachment for Submittal #71332 for Project: SINCLAIR HILLS AT E SIDEN FL AVE

Fla_Argos Ready Mix Concrete Safety Data Sheet.pdf attachment for Submittal #71332 for Project: SINCLAIR HILLS AT E SIDEN FL AVE

1992 - 2022 Quadrel, Inc.

Quadrel iService SM

Figure D.7 Sinclair Hills drilled shaft certification data submittal page 1.

 Submittal No.
 71332
 Argos
 Telephone:
 (813) 962-3213

 Date Issued:
 7/11/2022
 5920 W. Linebaugh Ave.
 Fax
 (813) 968-5769

 Tampa, FL 33624
 Cell:

Contractor: RW Harris

Project: SINCLAIR HILLS AT E SIDEN FL AVE

To Whom It May Concern:

We are submitting these mixes in accordance with ACI 318 (Chapter 5), proportioning on the basis of field experience and/or the trial mixture method:

 Mix Code Number
 Description
 Intended Use

 40JAF79
 4000 JSAIRASHDSC
 4000 PSI Drill Shaft

When placing orders for this project, please order by product mix code number.

Argos warrants that the concrete as delivered to this project will meet or exceed the design strength specified on the delivery ticket when evaluated in accordance with ACI-318, ACI-301, and ASTM C-94, latest revision. The measured slump, and the concrete must be tested in strict accordance with the provisions of ASTM standards C-172, C-143, C-31, C-39, C-617, C-231, C-173, C-138, C-1019, C-78, C-567, C-1064, latest revisions.

All samples and testing of samples for acceptance shall be conducted at the point of discharge from the concrete delivery truck.

Should the Purchaser choose not to purchase temperature control measures, the Purchaser shall assume all liability for rejected concrete due to non-compliant concrete temperatures.

Responsibility for concrete when others supply mix designs will be the sole responsibility of those parties supplying the mix design.

Customer assumes total responsibility for concrete placement, finishing, initial and final curing, placement of joints at proper spacing, and any aesthetic concerns/issues (such as cracks, discoloration, etc.) that may arise in the plastic and hardened state.

The contents of this packet, with particular consideration in regard to the mix designs themselves, are considered proprietary in nature and are to be treated as confidential.

This information is being submitted for approval for use on this project. Please provide Argos an approved copy or a copy with the notes for correction of this submittal, when available.

Concrete will be delivered to the nearest accessible point over passable roads; customer assumes responsibility for all damages to city, state, and personal property, including concrete mixer truck if customer instructs concrete mixer truck to drive beyond curb lines.

Customer should provide concrete mixer truck with wash down area.

In accordance with ASTM C-94, please copy our office with all test results obtained on this concrete by independent testing laboratories.

Thank you for your business and cooperation in this matter.

Figure D.8 Sinclair Hills drilled shaft certification data submittal page 2.

(813) 962-3213 (813) 968-5769 Date Issued: 7/11/2022 Argos 5920 W. Linebaugh Ave. Tampa, FL 33624 Telephone: Fax Cell: Submittal No. 71332

Customer: RW Harris

SINCLAIR HILLS AT E SIDEN FL AVE Project:

Mix Code: 40JA	F79 Mix Code must i	be used when ordering concrete.		Weight
Material	Material Ty	/pe	ASTM	(lb)
Cement	Type IL	Type IL		564
Fly Ash	Fly Ash F	Fly Ash F		140
Coarse Aggregate	# 57		C33	1,614
Fine Aggregate	Natural S	and	C 33	1,324
Water	Water		C 1602	283
Admixture	Air Entrai	ner	C 260	2.5 oz/cy
Admixture	Stabilizer	Constitution and the constitut	C 494 Type D	1.00 to 15.00 oz/cwt CM
Admixture	Type A &	D Water Reducer	C 494 Type A/D	1.00 to 15.00 oz/cwt CM
Specified F'c :	4,000 psi @ 28 days	Designed Unit Weight:	145.3 lbs./cu.ft.	TOTAL 3,925
Slump:	8.50 +/- 1.50 in.	Designed W/C + P Ratio:	0.40	
Air:	3.00 +/- 1.50 %	Designed Volume:	27.02 cu.ft.	

NOTES:

Argos has no knowledge or authority regarding where this mix is to be placed; therefore, it is the responsibility of the project architect, engineer, and/or contractor to ensure that the above designed mix parameters of compressive strength, water-to-cementitious ratio (W/C+P), cement content, and air content are appropriate for the anticipated environmental conditions (ie. ACI-318 sections 4.1-4.3, and local Building Codes).

Customer assumes total responsibility for concrete placement, finishing, initial and final curing, placement of joints at proper spacing, and any aesthetic concerns/issues (such as cracks, discoloration, etc.) that may arise in the plastic and hardened state.

Customer assumes responsibility for any performances issues (strength, aesthetic, durability, air entrainment etc.) as a result of water added to concrete at the project site that exceeds the w/c+p.

Designed mix cementitious content, is stated as a minimum, and Argos reserves the right to increase cementitious content. Chemical admixtures are added in accordance with the manufacturer's recommendations. Argos reserves the right to adjust these dosages to meet the changes in jobsite demands.

All raw materials are subject to change depending on availability. All substitutes are guaranteed to meet or exceed projects performance specification requirements.

Argos may use admixtures or procedures not listed above to control the mixture during Hot or Cold weather, for pumping, long hauls, or other special applications, unless restricted in writing by the client.

In accordance with ASTM C-94, please copy our office with all test results obtained on this concrete by independent testing laboratories.

Quadrel iService SM 1992 - 2022 Quadrel, Inc.

Figure D.9 Sinclair Hills drilled shaft certification data submittal page 3.

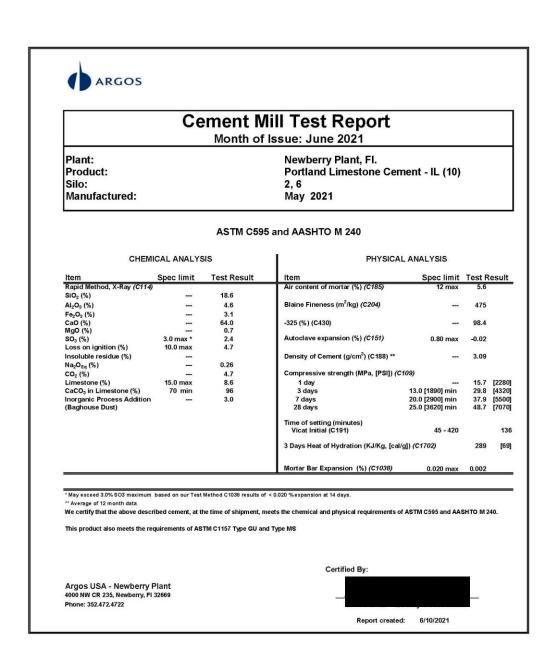


Figure D.10 Sinclair Hills drilled shaft certification data submittal page 4.

TYPE IL PORTLAND LIMESTONE CEMENT

For Ready Mix Concrete Use

Argos Type IL portland limestone cement (PLC) is a blended hydraulic cement with up to 15 percent limestone.

It is manufactured with the same materials, additives, equipment, and quality control/quality assurance measures as our Type I/II cement and is manufactured to produce equivalent performance. This facilitates the IL PLC use as a one-to-one substitution for Type I/II cement.

Argos recommends that Type IL PLC cement be used at equal substitution on all ready mix concrete projects allowing use of Type I or Type II cement in S1 exposure class as defined in ACI 318-14.

CONCRETE PERFORMANCE

The table below compares three mixes, each with Type I/II or Type IL cement and with water adjusted to constant slump.

Units	4000 psi	isi 4000 p		ly ash mix	4000 psi ternary mix	
	Type I/II	Type IL	Type I/II	Type IL	Type I/II	Type IL
lb/cy	550	550	440	440	275	275
lb/cy	•		110	110	110	110
lb/cy	<i>a</i> :				165	165
gal/cy	35	35	34	34	35	35
oz/cwt	4	4	4	4	4	4
in	4.5	4.25	4	4.75	4	4.5
	1.9	2.2	1.6	1.2	1.5	1.3
psì	2430	2430	1910	1740	1260	1410
psi	4020	3940	3230	3180	2660	2920
psì	4510	4440	3670	3700	3590	3650
psì	5860	5880	5430	5360	6160	6170
	lb/cy lb/cy lb/cy gal/cy oz/cwt in psi psi psi	Units Type I/II Ib/cy 550 Ib/cy - Ib/cy - gal/cy 35 oz/cwt 4 in 4.5 1.9 psi 2430 psi 4020 psi 4510	Units Type / I Type L lb/cy 550 550 lb/cy - - lb/cy - - gal/cy 35 35 oz/cwt 4 4 in 4.5 4.25 1.9 2.2 psi 2430 2430 psi 4020 3940 psi 4510 4440	Units Type I/II Type IL Type I/II Ib/cy 550 550 440 Ib/cy	Units Type I/II Type IL Type I/II Type IL Ib/cy 550 550 440 440 Ib/cy - 110 110 110 Ib/cy	Units Type / Ty

Note: Cernent and water weights adjusted to proper yield. No retarder used.

LIMITED WARRANTY

Argos warrants that Argos IL PLC Cement meets the requirements of American Association of State Highway and Transportation Officials (AASHTO) M 240, ASTM C595 and ASTM C1157. Argos makes no other warranty, whether of merchantability or fitness for a particular purpose, with respect to Argos IL PLC Cement.

www.argos-us.com

Figure D.11 Sinclair Hills drilled shaft certification data submittal page 5.

SULFATE EXPOSURE

Argos Type IL PLC cement meets the requirements for ASTM C595 and C1157 Type MS, and has been shown to meet the requirements of the American Concrete Institute (ACI) 318-14 for S1 exposure class.

- 0.03% expansion at 180-day with 22% ash for ASTM C1012.
- 0.06% expansion at 180 test-day for ASTM C1012 (see ACI 318-14 Table 19.3.2.1 Footnote 3).

APPROVALS

Argos IL PLC exceeds AASHTO M240 and ASTM C595 for Type IL and is approved by the Department of Transportation of certain states. It also meets the requirements of ASTM C1157. The use of this cement type is allowed in the following codes and specifications:

- · Certain building codes, including Florida
- ACI 301-15 Specifications for Structural Concrete
- ACI 318-14 Building Code Requirements for Structural Concrete
- ACI 350.5-12 Specifications for Environmental Concrete Structures
- ASTM C94 Standard Specification for Ready Mixed Concrete

HEAT OF HYDRATION AND FINENESS

Heat generation and strength gain are equivalent in Argos Type IL PLC and I/II MH cements. Type IL PLC cement has higher fineness than Type I/II cement as measured by the Blaine Test (ASTM C204). However, limestone creates a "false Blaine" since it is easier to grind and not representative of the true clinker fineness.

CEMENT PROPERTIES

*Data is from June 2017

Parameter	Method	Units	Type I/II	Type IL*
1-day strength	C109	psi	2090	2560
3-day strength	C109	psi	3670	4430
7-day strength	C109	psi	5020	5760
28-day strength	C109	psi	7130	7640
Percent limestone	*	%	4	10
CaCO ₃ in limestone	C114	%	91	92
Fineness (Blaine)	C204	m²/kg	386	500
Fineness (#325 residue)	C430	%	4.4	1.4
Loss on ignition	C114	%	2.7	6.3
SO ₂		%	3.1	3.6
Equivalent alkalies, as Na,O		%	0.29	0.32
Setting time, initial (Vicat)	C191	Min	112	125
Air content in mortar	C185	%	4.3	3.0
Heat of hydration, three days	C1702	cal/g	66	68

PRECAUTIONS

upon request.

Direct contact with wet cement should be avoided. If contact occurs, the skin should be washed with water as soon as possible. Exposure can cause serious injury, including potentially irreversible chemical (caustic) burns. If cement enters the eyes, immediately rinse thoroughly with water and seek medical attention.

For more information, reference the applicable Argos Safety Data Sheet (SDS), which should be consulted prior to use of this product and is available

For product use and availability, contact your Argos sales representative or our Customer Value Center (CVC) at 800-331-0022 or cement-services@argos-us.com.

www.argos-us.com

Figure D.12 Sinclair Hills drilled shaft certification data submittal page 6.

TAMPA CEMENT GRINDING PLANT 2001 Maritime Boulevard Tampa, Florida 33605-6760 Phone: (813) 247-4831 Fax: (813) 247-5650

MILL TEST REPORT

Month of Issue: June 2021 Class F Fly Ash, FA40 Source: Eren Energy - Zonguldak, Turkey Supplier: Argos, Tampa Plant Silos: 278.28 Received: May 2021

CHEMICAL ANALYSIS	COMPOSITION	LIMIT	ASTM Class F
Silicon Dioxide (SIO ₂)	62.7%		
Aluminum Oxide (Al ₂ O ₃)	22.7%		
Iron Oxide (Fe ₂ O ₃)	4.5%		
Sum of Constituents	90.0%	Min.	50.0%
Calcium Oxide (CaO)	2.8%	Max.	18.0%
Sulfur Trioxide (SO ₃)	0.3%	Max.	5.0%
Magnesium Oxide (MgO)	1.4%		
Sodium Oxide (Na ₂ O)	0.6%		
Potassium Oxide (K ₂ O)	1.7%		
Sodium Oxide Equivalent (Na2O+0.658K2O)	1.7%		
Moisture	0.1%	Max.	3.0%
Loss On Ignition	1.2%	Max.	6.0%
PHYSICAL ANALYSIS			
Fineness, % Retained on #325	22.7%	Max.	34%
Strength Activity Index - 7 or 28 day requir	ement		
7 day, % of control	81%	Min.	75%
28 day, % of control	90%	Min.	75%
Water Requirement, % of control	98%	Max.	105%
Autoclave Soundness	0.0%	Max.	0.8%
Density, g/cm³	2.15		
§ Chemical analysis performed as per ASTM C114 Rapid Te	st Methods.		

The Fly Ash covered by this report compiles with the current specifications for: ASTM C618: Class F Fly Ash FDOT Section 929: Class F Fly Ash

Doug Kraszka Quality Coordinator Report Created: June 9, 2021

Figure D.13 Sinclair Hills drilled shaft certification data submittal page 7.

Diamond Sand Mine 16659 205 Story Rd. Lake Wales, FL 33853

To our valued customer,

This material is currently produced at our Diamond Sand mine and certified using the "full QC Certification System" as outlined in chapter 14 of the Aggregate Rule (14-103 F.A.C.). It meets all current requirements of section 902 of the F.D.O.T Standard Specification for Road and Bridge Construction as well as the requirements of ASTM C33. Each load is certified by an individual ticket or bill of lading.

31162-CONCRETE SAND (FDOT F01)

Procedure	Sieve/Test	Average	Unit	FLDOT Silica Sand
T 27/C 136	#4 (4.75mm)	100.0	%	95-100
	#8 (2.36mm)	99.5	%	85-100
	#16 (1.18mm)	95.0	%	65-97
	#30 (.6mm)	61.0	%	25-70
	#50 (.3mm)	23.7	%	5-35
	#100 (.15mm)	3.0	%	0-7
	#200 (75µm)	0.10	%	0-4
	FM	2.18		1.96-2.36
	-#200 (75um)	0.09	%	0.00-4.00
	Absorption	0.24	%	
	SPGR (Dry,Gsb)	2.639		
	SPGR (SSD)	2.646		
	SPGR (Apparent, Gsa)	2.656		

Sincerely,

Jim Farmer Technical Services Manager Vuclan Materials Company 863-287-9192

> Name/Title Jim Farmer / Technical Services Manager

Figure D.14 Sinclair Hills drilled shaft certification data submittal page 8.

DAREX® AEA

Air-entraining admixture ASTM C260

Product Description

DAREX® AEA admixture is an aqueous solution of a complex mixture of organic acid salts. DAREX® AEA is specially formulated for use as an air–entraining admixture for concrete and is manufactured under rigid control which provides uniform, predictable performance. It is supplied ready–to–use and does not require pre–mixing with water. One gallon weighs approximately 8.5 lbs (1.02 kg/L).

Product Advantage

- Economical air entrainer is suitable for improving workability of harsh mixes
- Can be used in wide spectrum of mix designs

Uses

DAREX® AEA is used in ready-mix and concrete products plants. It is also used on the job with job site mixers and highway pavers— wherever concrete is mixed and there is a need for purposeful air entrainment.

Because DAREX® AEA imparts workability to the mix, it is particularly effective with slag, lightweight, or manufactured aggregates which tend to produce harsh concrete. It also makes possible the use of natural sand deficients in fines.

Performance

Air is entrained by the development of a semi-microscopic bubble system, introduced into the mix by agitation and stabilized by DAREX® AEA in the mortar phase of the concrete.

Workability is improved

Millions of tiny air bubbles entrained with DAREX ® AEA act as flexible ball bearings, lubricating and plasticizing the concrete mix. This permits a reduction in mixing water with no loss in slump. Placeability is improved—bleeding and segregation are minimized.

Durability is increased

DAREX® AEA concrete is extremely durable, particularly when subjected to freezing and thawing. It has resistance to frost and de-icing salts, as well as to sulfate, sea and alkaline waters.

Page 1 of 3

Figure D.15 Sinclair Hills drilled shaft certification data submittal page 9.

Addition Rates

There is no standard addition rate for DAREX® AEA. The amount to be used will depend upon the amount of air required under job conditions, usually in the range of 4% to 8%. Typical factors which might influence the amount of air entrained are temperature, cement, sand gradation and use of extra fine materials such as fly ash. Typical DAREX® AEA addition rates range from ½ to 3 fl oz/100 lbs (30 to 200 mL/100 kg) of cement.

The air-entraining efficiency of DAREX® AEA becomes even greater when used with water-reducing and set-retarding agents. This may allow a reduction of up to ¾ in the amount of DAREX® AEA required for the specified air content.

Concrete Mix Adjustment

Entrained air will increase the volume of the concrete making it necessary to adjust the mix proportions to maintain the cement factor and yield. This may be accomplished by a reduction in water requirement and aggregate content.

Compatibility with Other Admixtures and Batch Sequencing

DAREX® AEA is compatible with most GCP admixtures as long as they are added separately to the concrete mix. In general, it is recommended that DAREX® AEA be added to the concrete mix near the beginning of the batch sequence for optimum performance, preferably by "dribbling" on the sand. Different sequencing may be used if local testing shows better performance. Please see GCP Technical Bulletin TB-0110, Admixture Dispenser Discharge Line Location and Sequencing for Concrete Batching Operations for further recommendations. DAREX® AEA should not come in contact with any other admixture before or during the batching process, even if diluted in mix water. DAREX® AEA should not be added directly to heated water.

DAREX® AEA is not recommended for use in concrete treated with naphthalene-based admixtures including DARACEM® 19 and DARACEM® 100, or melamine-based admixtures including DARACEM® 65.

Pretesting of the concrete mix should be performed before use, as conditions and materials change in order to assure compatibility, and to optimize dosage rates, addition times in the batch sequencing and concrete performance. Please consult your GCP Applied Technologies representative for guidance.

Packaging & Handling

DAREX® AEA is available in bulk, delivered in metered tank trucks, totes and drums.

DAREX® AEA will freeze at about 30 °F (-1 °C), but its air–entraining properties are completely restored by thawing and thorough mechanical agitation.

Dispensing Equipment

A complete line of automatic DAREX ® AEA dispensers is available. Accurate and simple, these dispensers are easily adapted to existing facilities on paving mixers and in batching plants.

Page 2 of 3

Figure D.16 Sinclair Hills drilled shaft certification data submittal page 10.

Specifications

Concrete shall be air entrained concrete, containing 4% to 8% entrained air. The air contents in the concrete shall be determined by the pressure method (ASTM Designation C231) or gravimetric method (ASTM Designation C138). The air–entraining admixture shall be DAREX® AEA, as manufactured by GCP Applied Technologies, or equal. The air–entraining admixture shall be added at the concrete mixer or batching plant in such quantities as to give the specified air contents.

gcpat.com | North America Customer Service: 1 877-4AD-MIX1 (1 877-423-6491)

We hope the information here will be helpful. It is based on data and knowledge considered to be true and accurate, and is offered for consideration, investigation and verification by the user, but we do not warrant the results to be obtained. Please read all statements, recommendations, and suggestions in conjunction with our conditions of sale, which apply to all goods supplied by us. No statement, recommendation, or suggestion is intended for any use that would infringe any patent, copyright, or other third party right.

DAREX 15 is a trademark, which may be registered in the United States and/or other countries, of GCP Applied Technologies Inc. This trademark list has been compiled using available published information as of the publication date and may not accurately reflect current trademark ownership or status.

© Copyright 2018 GCP Applied Technologies Inc. All rights reserved.

GCP Applied Technologies Inc., 62 Whittemore Avenue, Cambridge, MA 02140 USA.

In Canada, GCP Canada, Inc., 294 Clements Road, West, Ajax, Ontario, Canada L15 3C6.

This document is only current as of the last updated date stated below and is valid only for use in the United States. It is important that you always refer to the currently available information at the URL below to provide the most current product information at the time of use. Additional literature such as Contractor Manuals, Technical Bulletins, Detail Drawings and establish grecommendations and other relevant documents are also available on www.gcpat.com. Information found on other websites must not be relied upon, as they may not be up-to-date or applicable to the conditions in your location and we do not accept any responsibility for their content. If there are any conflicts or if you need more information, please contact GCP Customer Service.

Last Updated: 2018-08-24
gcpat.com/solutions/products/darex-aea

Page 3 of 3

Figure D.17 Sinclair Hills drilled shaft certification data submittal page 11.

GCP Applied Technologies 62 Whittemore Avenue Cambridge MA 02140

gcpat.com

SCC Customer Service: 1-877- 423-6491

Todd Blanchard Argos Ready Mix 5920 W. Linebaugh Avenue TAMPA, Florida 33624

Project Name: Various Projects

May 11, 2021

This is to certify that **Darex® AEA**, a **Air Entraining Agent**, as manufactured and supplied by GCP Applied Technologies Inc., is formulated to comply with the Specifications for Chemical Admixtures for Concrete, ASTM: **C260**, AASHTO: **M154**.

Darex® AEA does not contain calcium chloride or chloride containing compounds as a functional ingredient. Chloride ions may be present in trace amounts contributed from the process water used in manufacturing.

A construction products technologies company

Figure D.18 Sinclair Hills drilled shaft certification data submittal page 12.

GCP Applied Technologies 62 Whittemore Avenue Cambridge MA 02140

gcpat.com

SCC Customer Service: 1-877- 423-6491

Todd Blanchard Argos Ready Mix 5920 W. Linebaugh Avenue TAMPA, Florida 33624

Project Name: Various Projects

May 11, 2021

This is to certify that **Recover®**, a **Hydration Stabilizer**, as manufactured and supplied by GCP Applied Technologies Inc., is formulated to comply with the Specifications for Chemical Admixtures for Concrete, ASTM: **C494**, **Type D**, AASHTO: **M194**, **Type D**.

Recover does not contain calcium chloride or chloride containing compounds as a functional ingredient. Chloride ions may be present in trace amounts contributed from the process water used in manufacturing.

A construction products technologies company

Figure D.19 Sinclair Hills drilled shaft certification data submittal page 13.

RECOVER®

Hydration stabilizer ASTM C494 Type B and D

Product Description

RECOVER® is a ready-to-use aqueous solution of chemical compounds specifically designed to stabilize the hydration of Portland cement concretes. The ingredients are factory pre-mixed in exact proportions under strict quality control to provide uniform results. One gallon weighs approximately 9.6 lbs (1.15 kg/L).

Product Advantages

- Eliminates the need to discharge wash water from the mixer
- Prevents the waste of unused concrete
- Provides predictable extended set for continuous placement on mass concrete and tremie projects, or on long hauls to remote sites

Uses

RECOVER® is used to stabilize mixer wash water and returned or leftover concrete for extended periods, allowing for use of the materials when specified or allowed. It is also used where controlled extended set of concrete is needed. It is the concrete user's responsibility to determine if leftover, returned or extended-set concrete is specified or allowed.

Wash Water

For wash water applications, RECOVER ® is used to eliminate the need to discharge wash water from the mixer. This allows the wash water to be used as mix water in the next batch of concrete produced and prevents the residual plastic concrete from hardening. Stabilization of up to 96 hours is possible depending on dosage rate.

Returned Concrete

For returned or leftover concrete, RECOVER ® is used to prevent plastic concrete from reaching initial set. This allows the concrete to be stored in a plastic state and then used when specified or allowed. The use of this concrete may require the addition of freshly batched concrete and/or an accelerator such as DARACCEL ® or POLARSET®.

Stabilization of concrete for up to 96 hours is possible depending on dosage rate. Use prevents the waste of unused concrete.

Set Time Control

RECOVER® is also used in situations where a controlled set time extension is required. Examples include: extended hauls, large continuous pours or pre-batching of concrete for later use.

Page 1 of 3

Figure D.20 Sinclair Hills drilled shaft certification data submittal page 14.

Addition Rates

Addition rates of RECOVER® for wash water range from 6 to 128 fl oz (180 to 3800 mL) per treatment. The amount used will depend on the specific materials involved, mixer type and stabilization period. Addition rates for returned or leftover concrete will range from 3 to 128 fl oz/100 lbs (195 to 8350 mL/100 kg) of cement. The amount used will depend on the specific materials involved, concrete age, temperature conditions and stabilization period. For applications requiring set time extensions well in excess of 4 hours, RECOVER® may be used at addition ranges from 5 to 50 oz/100 lbs (325 to 3260 mL/100 kg) of cement. For use as a traditional ASTM Type B or D retarder, RECOVER® may be used at addition rates of 2 to 6 oz/100 lbs (130 to 390 mL/100 kg) of cement. Proper dosage rate selection can only be achieved through pretesting. Consult your local GCP Applied Technologies admixture representative.

Compatibility with Other Admixtures and Batch Sequencing

RECOVER® is compatible with most GCP admixtures as long as it is added separately to the concrete mix, usually through the water holding tank discharge line. In general, it is recommended that RECOVER® be added to the concrete mix near the end of the batch sequence for optimum performance. Different sequencing may be used if local testing shows better performance. Please see GCP Technical Bulletin TB-0110, Admixture Dispenser Discharge Line Location and Sequencing for Concrete Batching Operations for further recommendations.

Pretesting of the concrete mix should be performed before use, as conditions and materials change in order to ensure compatibility, and to optimize dosage rates, addition times in the batch sequencing and concrete performance. For concrete that requires air entrainment, the use of an ASTM C260 air entraining agent (such as Daravair® or Darex® product lines) is recommended to provide suitable air void parameters for freeze—thaw resistance. Please consult your GCP Applied Technologies representative for guidance.

Packaging & Handling

RECOVER® is available in bulk, delivered by metered tank trucks, totes and drums.

 ${\tt RECOVER} @ \ will \ freeze, but \ will \ return \ to \ full \ effectiveness \ after \ thawing \ and \ thorough \ mechanical \ agitation.$

Performance

RECOVER® stabilizes the hydration process of Portland cement preventing it from reaching initial set. This stabilization is not permanent and is controlled by dosage rate. For wash water, the RECOVER® treated water is mixed or sprayed in a specific manner to thoroughly coat the interior of the mixer. The water is used as mix water in the next batch of concrete produced, which then scours the unhardened material from the interior of the mixer. Stabilization of returned or leftover concrete with RECOVER® maintains the plasticity of the concrete for the desired storage duration. This stabilized concrete then resumes normal hydration when the RECOVER® dosage effects subside, or when it is activated by the addition of fresh concrete and/or an accelerator. The result can be concrete with normal plastic and hardened properties.

Page 2 of 3

Figure D.21 Sinclair Hills drilled shaft certification data submittal page 15.

Dispensing Equipment

A complete line of GCP dispensing equipment is available for RECOVER $^{\circledR}$. This includes the Reach 360TM System which uses an innovative spray wand technology to simplify wash water procedures.

gcpat.com | North America Customer Service: 1 877-4AD-MIX1 (1 877-423-6491)

We hope the information here will be helpful. It is based on data and knowledge considered to be true and accurate, and is offered for consideration, investigation and verification by the user, but we do not warrant the results to be obtained. Please read all statements, recommendations, and suggestions in conjunction with our conditions of sale, which apply to all goods supplied by us. No statement, recommendation, or suggestion is intended for any use that would infringe any patent, copyright, or other third party right.

RECOVER, DARACCEL, POLARSET, DARAVAIR and DAREX are trademarks, which may be registered in the United States and/or other countries, of GCP Applied Technologies Inc. This trademark list has been compiled using available published information as of the publication date and may not accurately reflect current trademark ownership or status.

© Copyright 2018 GCP Applied Technologies Inc. All rights reserved.

GCP Applied Technologies Inc., 62 Whittemore Avenue, Cambridge, MA 02140 USA.

In Canada, 294 Clements Road, West, Ajax, Ontario, Canada L1S 3C6.

This document is only current as of the last updated date stated below and is valid only for use in the United States. It is important that you always refer to the currently available information at the URL below to provide the most current product information at the time of use. Additional literature such as Contractor Manuals, Technical Bulletins, Detail Drawings and detailing recommendations and other relevant documents are also available on www.gcpat.com. Information found on other websites must not be relied upon, as they may not be up-to-date or applicable to the conditions in your location and we do not accept any responsibility for their content. If there are any conflicts or if you need more information, please contact GCP Customer Service.

Last Updated: 2018-08-24 gcpat.com/solutions/products/recover

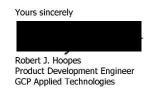
Page 3 of 3

Figure D.22 Sinclair Hills drilled shaft certification data submittal page 16.

GCP Applied Technologies 62 Whittemore Avenue Cambridge MA 02140

gcpat.com

SCC Customer Service: 1-877- 423-6491


Todd Blanchard Argos Ready Mix 5920 W. Linebaugh Avenue TAMPA, Florida 33624

Project Name: Various Projects

May 11, 2021

This is to certify that **WRDA® 60**, a **Water Reducer**, as manufactured and supplied by GCP Applied Technologies Inc., is formulated to comply with the Specifications for Chemical Admixtures for Concrete, ASTM: **C494**, **Type A**, **D**, AASHTO: **M194**, **Type A**, **D**.

WRDA® 60 does not contain calcium chloride or chloride containing compounds as a functional ingredient. Chloride ions may be present in trace amounts contributed from the process water used in manufacturing.

A construction products technologies company

Figure D.23 Sinclair Hills drilled shaft certification data submittal page 17.

WRDA® 60

Water-reducing admixture ASTM C494 Type A and D

Product Description

WRDA* 60 is a polymer based aqueous solution of complex organic compounds. WRDA 60 is a ready-to-use low viscosity liquid which is produced under rigorous quality control to provide uniform, predictable performance. WRDA 60 does not contain added calcium chloride and weighs approximately 9.59 lbs/gal (1.15 kg/L).

USAS

WRDA $^{\circ}$ 60 produces concrete with lower water content (typically 8%–10% water reduction), improved workability and higher strengths. It is used in ready-mix block and concrete product plants.

Advantages

WRDA 60 offers significant advantages over single component water reducers. Water reduction and setting times are more consistent due to the polymer contents. WRDA 60 performs especially well in warm and hot weather climates to maintain slump and workability in high ambient temperatures.

The use of WRDA 60 produces a plastic concrete that is more workable, easier to place and more finishable than plain concrete. In the hardened state WRDA 60 concrete has higher compressive strengths at all ages than untreated concrete.

Finishability

WRDA 60 produces workable concrete with improved finishability and workability. The influence of WRDA 60 on lean mixes will be particularly noticeable. Floating and troweling, by machine or by hand, imparts a smooth, close surface tolerance.

Product Advantages

- Consistent water reduction and set times
- Improves performance concrete containing supplementary cementitious materials
- Produces concrete that is more workable, easy to place and finish
- · High compressive and flexural strengths

Addition Rates

WRDA 60 provides water reduction and minimal retardation, through mild and extended retardation, as job site conditions require. As addition rates are increased, set times will be extended proportionately.

The addition rate of WRDA 60 is 3 to 10 fl oz/100 lbs (195 to 625 mL/100 kg) cementitious material. Pretesting is recommended to determine the optimum addition rate. Optimum addition rate is determined by other concrete mixture components, job site conditions and desired performance characteristics.

Compatibility with Other Admixtures and Batch Sequencing

WRDA 60 is compatible with most GCP admixtures as long as they are added separately to the concrete mix, usually through the water holding tank discharge line. In general, it is recommended that WRDA 60 be added to the concrete mix near the end of the batch sequence for optimum performance. Different sequencing may be used if local testing shows better performance. Please see GCP Technical Bulletin TB-0110, Admixture Dispenser Discharge Line Location and Sequencing for Concrete Batching Operations for further recommendations.

Pretesting of the concrete mix should be performed before use, as conditions and materials change in order to assure compatibility, and to optimize dosage rates, addition times in the batch sequencing and concrete performance. For concrete that requires air entrainment, the use of an ASTM C260 air–entraining agent (such as Daravair* or Darex* product lines) is recommended to provide suitable air void parameters for freeze-thaw resistance. Due to a synergistic effect of WRDA 60, the quantity of air–entraining agent added to WRDA 60 may be reduced by 25 to 50%. Please consult your GCP Applied Technologies representative for guidance.

Figure D.24 Sinclair Hills drilled shaft certification data submittal page 18.

Packaging & Handling

WRDA 60 is available in bulk, delivered by metered tank trucks, totes and drums.

WRDA 60 will freeze at about 28°F (-2°C) but will return to full strength after thawing and thorough mechanical agitation.

Dispensing Equipment

A complete line of accurate, automatic dispensing equipment is available. WRDA 60 may be introduced into the mix on the sand or in the mix water.

Specifications

Concrete shall be designed in accordance with Standard Recommended Practice for Selecting Proportions for Concrete,

The water-reducing admixture shall be WRDA 60 as manufactured by GCP Applied Technologies, or approved equal. The admixture shall not contain calcium chloride. It shall meet the requirements of Specification for Chemical Admixtures for Concrete ASTM Designation C494 as a Type D admixture when used at an addition rate of 3 to 10 fl oz/100 lbs (190 to 625 mL/100 kg) of cementitious material. WRDA 60 is NSF Std. 61 certified when used at a maximum addition rate of 6 fl oz/100 lbs (390 mL/ 100 kg) of cementitious material.

The admixture shall be delivered as a ready-to-use liquid product and shall require no mixing at the batching plant or job site.

gcpat.com | North America Customer Service: 1-877-4AD-MIX1 (1-877-423-6491)

We hope the information here will be helpful. It is based on data and knowledge considered to be true and accurate, and is offered for contor warrant the results to be obtained. Please read all statements, recommendation, and suggestions in conjunction with our conditions recommendation, or suggestion is insteaded for any use that would infining a my patent, copyright, or other third party right.

WFDA, Darvavar and Dares are trademarks, which may be registered in the United States and/or other countries, of GCP Applied Technologies Inc. This trademark list has been compiled using available published information as of the publication date and may not accurately reflect current trademark nowmership or status.

© Copyright 2016 GCP Applied Technologies Inc. All rights reserved.

GCP Applied Technologies Inc., 62 Whittemore Avenue, Cambridge, MA 02140 USA. In Canada, 294 Clements Road, West, Ajax, Ontario, Canada L1S 3C6.

GCP0083 DW-24-1216 gcp applied technologies

Figure D.25 Sinclair Hills drilled shaft certification data submittal page 19.

1. IDENTIFICATION

Product Identifier Ready Mix Concrete (Concrete)

Synonyms: Ready Mix Concrete, Concrete Ready Mix, Portland Cement Concrete, Ready Mix Stucco, Ready Mix grout, Ready Mix, Concrete, Freshly Mixed Concrete, Collodial Concrete, Permeable

Concrete, Shotcrete, Gunite, Polymer-Portland Cement Concrete, Colored Concrete, Flowable Fill, Roller-Compacted Concrete, Fiber Reinforced Concrete. Includes Florida Super n Sand Stucco Mix

and Florida Super n Sand Masonry Mortar Mix.

Intended use of the Cement is used as a binder in concrete and mortars that are widely used in construction. Cement is

product: distributed in bags, totes and bulk shipment.

Contact: Argos Cement

3015 Windward Plaza Suite 300 Alpharetta, GA 30005 mheaton@argos-us.com

Contact Person: Michael J. Heaton

Contact Information: CHEMTREC EMERGENCY TELEPHONE NUMBER (24 hrs): (800)424-9300

COMPANY CONTACT (business hours): (678)368-4300 (8 AM-4 PM EST)

2. HAZARD IDENTIFICATION

According to OSHA 29 CFR 1910.1200 HCS

Classification of the Substance or Mixture

Classification (GHS-US): Skin Corrosion/Irritation Category 1C H314 Skin Sensitization H317 Category 1 Serious Eye Damage/Eye Irritation H318 Category 1 STOT SE Category 3 H335 Carcinogenicity STOT RE Category 1A H350 Category 1 H372

Labeling Elements

Signal Word (GHS-US) : Danger

Hazard Statements (GHS-US): H314 – Causes severe skin burns and eye damage.

H317 - May cause an allergic skin reaction.

H318 – Causes serious eye damage.

H335 – May cause respiratory irritation.

H350 - May cause cancer.

H372 – Causes damage to lung through prolonged or repeated exposure inhalation.

Page 1 of 14 May 2015

Figure D.26 Sinclair Hills drilled shaft certification data submittal page 20.

Precautionary Statements (GHS-US) :

P201 - Obtain special instructions before use. Prevention

P202 - Do not handle until all safety precautions have been read and understood.

P260 - Do not breathe dust/fume/gas/mist/vapors/spray.

 ${\bf P264-Wash\ thoroughly\ after\ handling.}$

P270 - Do not eat, drink or smoke when using this product.

P271 – Use only outdoors or in a well-ventilated area.

P272 - Contaminated work clothing should not be allowed out of the workplace.

P280 - Wear protective gloves.

P301+P330+P331 - IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. Response ${\tt P3O3+P361+P353-IF\ ON\ SKIN\ (or\ hair): Take\ off\ immediately\ all\ contaminated}$

clothing. Rinse skin with water/shower.

P304+P340: IF INHALED: Remove person to fresh air and keep comfortable for

breathing. P305+P351+P338 – IF IN EYES: Rinse cautiously with water for several minutes.

Remove contact lenses, if present and easy to do. Continue rinsing. P308+P313 - If exposed or concerned: Get medical attention/advice.

P310 – Immediately call a POISON CENTER/Doctor.

P333+P313 - If skin irritation or a rash occurs: Get medical advice/attention. P363 – Wash contaminated dothing before reuse.

P403+P233 – Store in a well-ventilated place. Keep container tightly closed. Storage

P501- Dispose of contents/container in accordance with

local/regional/national/international regulations.

Hazards Not Otherwise Classified: None

3. COMPOSITION / INFORMATION ON INGREDIENTS

Chemical Composition Information

Disposal

Name	Product Identifier (Cas#)	% (w/w)	Classification
Limestone	1317-65-3	20-65	Not Classified
Quartz	14808-60-7	0-90	Carcinogenicity 1A, H350 STOT RE 1, H372
Calcium Hydroxide	1305-62-0	15-25	Skin Irritant 2, H315 Serious Damage Eye 1, H318
Portland Cement	65997-15-1	10-30	Skin Corrosive 1C, H314 Serious Damage Eye 1, H318 Skin Sensitization 1, H317 STOT SE 3, H335
Fly Ash	68131-74-8	0-20	Not Classified
Calcium Oxide	1305-78-8	0-5	Skin Corrosive 1, H314 Serious Damage Eye 1, H318 STOT SE 3, H335
Magnesium oxide	1309-48-4	0-4	Skin Irritant 3 H316 Eye Irritant 2, H320 STOT SE 3, H335
Calcium sulfate dihydrate	133397-24-5	0-2	Not Classified

The exact percentage (concentration) of the composition has been withheld as proprietary.

Page 2 of 14 May 2015

Figure D.27 Sinclair Hills drilled shaft certification data submittal page 21.

4. FIRST AID MEASURES

Route	Measures
Inhalation	Inhalation of wet product not foreseeable route of exposure. If dust from the material is inhaled, remove victim to fresh air and keep at rest in a position comfortable for breathing, if the individual is not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial respiration. It may be decoust to the person providing aid to give mouth-to-mouth resuscitation. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway, Inhalation of large amounts of Portland cement requires immediate medical attention. Call a poison center or physician.
Ingestion	Never give anything by mouth to an unconscious person. Do not induce vomiting. Rinse mouth with water and afterwards drink plenty of water. Get immediate medical attention.
Eye Contact	In case of contact get medical attention immediately. Call a poison center or physician. Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Continue to rinse for at least 30 minutes. Chemical burns must be treated promptly by a physician.
Skin Contact	Wash off with plenty of water. Remove contaminated clothing and shoes. Launder contaminated clothing before reuse. If skin irritation or rash occurs: Get medical advice/attention.
Absorption	As with skin contact, remove contaminated clothing and flush with copious amounts of water. Flush affected area for at least 15 minutes to minimize potential for further absorption. Seek medical attention if significant portions of skin have been exposed.

Most Important Symptoms

May cause skin burns. May cause serious eye damage. May cause allergic skin reaction. Carcinogen; breathing crystalline silica can cause lung disease, including silicosis and lung cancer. Crystalline silica has also been associated with scleroderma and kidney disease. May cause respiratory irritation. May cause damage to lung through prolonged repeated exposure.

Indication of any immediate medical attention and special treatment needed

Note to physician: Treat symptomatically. Contact poison treatment specialist immediately if large quantities have been ingested or inhaled.

5. FIRE-FIGHTING MEASURES

Flammable Properties

This product is not flammable or combustible.

Extinguishing Media

Use an extinguishing agent suitable for the surrounding fire.

Specific Hazards / Products of Combustion

No specific fire or explosion hazard.

Special Precautions and Protective Equipment for Firefighters

Move containers from fire area if this can be done without risk. Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.

 $See \, Section \, 9 \, for \, fire \, properties \, of \, this \, chemical \, including \, flash \, point, \, autoignition \, temperature, \, and \, explosive \, limits \, autoignition \, temperature, \, and \, explosive \, limits \, autoignition \, temperature, \, and \, explosive \, limits \, autoignition \, temperature, \, and \, explosive \, limits \, autoignition \, temperature, \, and \, explosive \, limits \, autoignition \, temperature, \, and \, explosive \, limits \, autoignition \, temperature, \, and \, explosive \, limits \, autoignition \, temperature, \, and \, explosive \, limits \, autoignition \, temperature, \, and \, explosive \, limits \, autoignition \, autoigni$

6. ACCIDENTAL RELEASE MEASURES

Personal Precautions

Keep unnecessary personnel away. Wear appropriate protective equipment and dothing during clean-up. Avoid inhalation of dust from the spilled material. Use a NIOSH/MSHA approved respirator if there is a risk of exposure to dust at levels exceeding the exposure limits. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. See Section 8 for additional information.

Page 3 of 14 May 2015

Figure D.28 Sinclair Hills drilled shaft certification data submittal page 22

Environmental Precautions

Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if reportable thresholds have entered the environment, including waterways, soil or air. Materials can enter waterways through drainage systems.

Containment and Clean-Up Methods
Scrape wet cement and place in container. Allow material to dry or solidify before disposal. Do not wash down sewage or drainage systems or into bodies of water.

7. HANDLING AND STORAGE

Handling Precautions

Avoid contact with eyes, skin, or clothing. This product contains quartz, which may become airborne without a visible cloud. Avoid breathing dust. Avoid creating dusty conditions. Use only with adequate ventilation to keep exposure below recommended exposure limits. Put on appropriate personal protective equipment (see Section 8). Persons with a history of skin sensitization problems should not be employed in any process in which this product is used. Avoid exposure by obtaining and following special instructions before use. Do not handle until all safety precautions have been read and understood. Keep in the original container or an approved alternative made from a compatible material and keep the container tightly closed when not in use. Empty containers retain product residue and can be hazardous. Do not reuse container.

Use care in handling/storage. Store in tightly closed original container in a well-ventilated place. Keep away from food, drink and animal feeding stuffs. Store in accordance with local/regional/national/international regulation. Keep out of reach of

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Occupational Exposure Limits US. ACGIH Threshold Limit Values Components Type Value Form Calcium Hydroxide: TWA 5 mg/m3 (CAS# 1305-62-0) . Caldium oxide: TWA 2 mg/m3 (CAS# 1305-78-8) (CAS# 13397-24-5) Magnesium oxide: TWA 10 mg/m3 Inhalable fraction. (CAS# 1309-48-4) Portland cement TWA 1 mg/m3 Respirable fraction. (CAS# 65997-15-1) Quartz: TWA 0.025 mg/m3 Respirable fraction. (CAS# 14808-60-7)

US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000)

Components Type Value Form
Calcium Hydroxide: PEL 5 mg/m3 Respirable fraction. (CAS# 1305-62-0) Caldium oxide: PEL 5 mg/m3 (CAS# 1305-78-8) (CAS# 13397-24-5) Limestone: PEL 5 mg/m3 Respirable fraction 15 mg/m3 Total dust. (CAS# 1317-65-3) Magnesium oxide: PEL 15 mg/m3 Total particulate. (CAS# 1309-48-4) Portland cement: PEL 5 mg/m3 Respirable fraction 15 mg/m3 Total dust. (CAS# 65997-15-1)

Page 4 of 14 May 2015

Figure D.29 Sinclair Hills drilled shaft certification data submittal page 23.

May 2015

```
US. OSHA Table Z-3 (29 CFR 1910.1000)
Components Type Value Form
Portland cement: TWA 50 mopof
(CAS# 65997-15-1)
Quartz: TWA 0.3 mg/m3 Total dust, 0.1 mg/m3 Respirable, 2.4 mppcf Respirable.
(CAS# 14808-60-7)
Canada. Alberta OELs (Occupational Health & Safety Code, Schedule 1, Table 2)
Components Type Value Form
Calcium Hydroxide: TWA 5 mg/m3
(CAS# 1305-62-0)
.
Calcium oxide: TWA 2 mg/m3
(CAS# 1305-78-8)
Calcium sulfate dihydrate: TWA 10 mg/m3
(CAS# 13397-24-5)
Limestone: TWA 10 mg/m3
(CAS# 1317-65-3)
Magnesium oxide: TWA 10 mg/m3 Fume.
(CAS# 1309-48-4)
Portland cement: TWA 10 mg/m3
(CAS# 65997-15-1)
Quartz: TWA 0.025 mg/m3 Respirable particles.
(CAS# 14808-60-7)
Canada. British Columbia OELs. (Occupational Exposure Limits for Chemical Substances, Occupational Health and
Safety Regulation 296/97, as amended)
Components Type Value Form
Calcium Hydroxide: TWA 5 mg/m3
(CAS# 1305-62-0)
Calcium oxide: TWA 2 mg/m3
(CAS# 1305-78-8)
Calcium sulfate dihydrate: STEL 20 mg/m3 Total dust, TWA 10 mg/m3 Inhalable
(CAS# 13397-24-5)
Limestone: STEL 20 mg/m3 Total dust, TWA 3 mg/m3 Respirable fraction 10 mg/m3 Total dust.
(CAS# 1317-65-3)
Magnesium oxide: STEL 10 mg/m3 Respirable dust and/or fume, TWA 3 mg/m3 Respirable dust and/or fume, 10 mg/m3
Inhalable fume.
(CAS# 1309-48-4)
Portland cement: TWA 3 mg/m3 Respirable fraction, 10 mg/m3 Total dust. (CAS# 65997-15-1)
Quartz TWA 0.025 mg/m3 Respirable fraction.
(CAS# 14808-60-7)
Canada, Ontario OELs. (Control of Exposure to Biological or Chemical Agents)
Components Type Value Form
Caldium Hydroxide: TWA 5 mg/m3
(CAS# 1305-62-0)
Calcium oxide: TWA 2 mg/m3
(CAS# 1305-78-8)
Calcium sulfate dihydrate: TWA 10 mg/m3 Inhalable fraction.
(CAS# 13397-24-5)
Magnesium oxide: TWA 10 mg/m3 Inhalable fraction.
(CAS# 1309-48-4)
Portland cement: TWA 10 mg/m3
```

Figure D.30 Sinclair Hills drilled shaft certification data submittal page 24.

Page 5 of 14

(CAS# 65997-15-1) Quartz: TWA 0.1 mg/m3 Respirable. (CAS# 14808-60-7)

Canada. Quebec OELs. (Ministry of Labor - Regulation Respecting the Quality of the Work Environment) Components Type Value Form

Calcium Hydroxide: TWA 5 mg/m3 (CAS# 1305-62-0) Calcium oxide: TWA 2 mg/m3

(CAS# 1305-78-8)

Calcium sulfate dihydrate: TWA 5 mg/m3 Respirable dust, 10 mg/m3 Total dust. (CAS# 13397-24-5)

(CAS# 13397-24-5) Limestone: TWA 10 mg/m3 Total dust. (CAS# 1317-65-3) Magnesium oxide: TWA 10 mg/m3 Fume. (CAS# 1309-48-4)

Portland cement: TWA 5 mg/m3 Respirable dust, 10 mg/m3 Total dust.

(CAS# 65997-15-1) Quartz: TWA 0.1 mg/m3 Respirable dust. (CAS# 14808-60-7)

Mexico. Occupational Exposure Limit Values

Components Type Value Form
Caldum Hydroxide: TWA 5 mg/m3
(CA\$# 1305-62-0)
Caldum oxide: TWA 2 mg/m3
(CA\$# 1305-78-8)
Caldum sulfate dihydrate: TWA 10 mg/m3
(CA\$# 13397-24-5)
Limestone: STEL 20 mg/m3, TWA 10 mg/m3
(CA\$# 1317-65-3)
Magnesium oxide: TWA 10 mg/m3 Fume.
(CA\$# 1309-48-4)
Portland cement: STEL 20 mg/m3, TWA 10 mg/m3
(CA\$# 55997-15-1)
Quartz: TWA 0.1 mg/m3

(CAS# 14808-60-7) Engineering Controls

Occupational exposure to nuisance dust (total and respirable) and respirable crystalline silica should be monitored and controlled. Use process enclosures, local exhaust ventilation, or other engineering controls to control airborne levels below recommended exposure limits. Ventilation should be sufficient to effectively remove and prevent buildup of any dusts or fumes that may be generated during handling or thermal processing. If engineering measures are not sufficient to maintain concentrations of dust particulates below the Occupational Exposure Limit (OEL), suitable respiratory protection must be worn. If material is ground, cut, or used in any operation which may generate dusts, use appropriate local exhaust ventilation to keep exposures below the recommended exposure limits.

Personal Protective Equipment

Exposure	Equipment
Eye / Face	To prevent eye contact, wear safety glasses with side shields, safety goggles or face shields when handling wet cement. Contact lenses should not be worn when working with cement or cement products.
Skin	Wear chemical-resistant gloves, footwear and protective clothing appropriate for risk of exposure. Contact glove manufacturer for specific information. Do not rely on barrier crèmes; barrier crèmes should
Page 6 of 14	May 2015

Figure D.31 Sinclair Hills drilled shaft certification data submittal page 25.

not be used in place of gloves.

Respiratory

Avoid tasks which cause dust to become airborne. Use local or general ventilation to control exposure below applicable exposure limits. Use NIOSH/MSHA approved (30 CFR 11) or NIOSH approved (42 CFR 84) respirators in poorly ventilated areas, or if an applicable exposure limit is exceeded, or when dust causes

discomfort or irritation.

General Always observe good personal hygiene measures, such as washing after handling the material and before Hygiene eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove

considerations contaminants

9. PHYSICAL AND CHEMICAL PROPERTIES

Property	Value	Comments
Appearance	Semi-fluid, flowable, granular paste	
Physical State	Fluid	
Odor	Odorless	
Odor Threshold	Not available	
рН	12-13 in water	
Melting / Freeze Point	Not available	
Boiling Point And Range	Not available	
Flash Point	Not flammable. Not combustible.	
Evaporation Rate	Not available	
Flammability	Not available	
Flammability Limits	Not available	
Vapor Pressure	Not available	
Vapor Density	Not available	
Specific Gravity	1.9-2.4	
Solubility	Slight (0.1-1%)	
Partition Coefficient	Not available	
Autoignition Temperature	Not available	
Decomposition Temperature	Not available	
Viscosity	Varies	
Percent Volatiles	Not available	

10. STABILITY AND REACTIVITY

Reactivity

Not expected to be reactive.

Sta bilit

The product is stable under normal conditions of use, storage and transport.

Page 7 of 14 May 2015

Figure D.32 Sinclair Hills drilled shaft certification data submittal page 26.

Reactions / Polymerization

Not expected to occur.

Conditions to Avoid

Contact with incompatible materials. When exposed to air it will absorb carbon dioxide to form calcium carbonate and magnesium oxide. When heated at temperatures above 580 deg. C, it loses water to form calcium oxide, magnesium oxide and water.

Incompatible Materials

Wet material is alkaline and will react with acids, ammonium salts, aluminum and other reactive metals. Hardened material is attacked by hydrofluoric acid releasing toxic silicon tetrafluoride gas.

Hazardous Decomposition Products

None expected under normal conditions of use.

11. TOXICOLOGICAL INFORMATION

Acute effects: Causes skin, eye and digestive tract burns.

Acute Toxicity (Inhalation LC50)

Portland cement (CAS# 65997-15-1): >1 mg/L (rat, 4hr)

Limestone (CAS# 1317-65-3): LC50 > 3 mg/L (rat, 4 hr) (Similar substance)

Calcium Hydroxide (CAS# 1305-62-0): No data available

Calcium Sulfate dehydrate (CAS# 13397-24-5): LC50 > 3.26 mg/L air (inhalation, dust, 4 h)

Magnesium Oxide (CAS# 1309-48-4): No data available.

Quartz (CAS# 14808-60-7): No data available.

Fly Ash (CAS# 68131-74-8): LC50 5.38 mg/L (rat, 4 hr) (fluidized Bed Combustion Fly Ash)

Calcium Oxide (CAS# 1305-78-8): No data available

Acute Toxicity (Oral LC50)

Portland cement (CAS# 65997-15-1): No data available. Limestone (CAS# 1317-65-3): LD50 6450 mg/kg (rat) (similar substance) Caldium Hydroxide (CAS# 1305-62-0): LD50 7340 mg/kg (rat) Caldium Sulfate dehydrate (CAS# 13997-24-5): LD50 > 2000 mg/kg (rat) Magnesium Oxide (CAS# 1309-48-4): LD50 3870 mg/kg (rat) Quartz (CAS# 14808-60-7):LD50 500 mg/kg (rat) Fly Ash: No data available. Caldium Oxide (CAS# 1305-78-8): LD50 > 2000 mg/kg (rat)

Acute Toxicity (Dermal LC50)

Portland cement (CAS# 65997-15-1): No data available Limestone (CAS# 1317-65-3): ID50 > 2000 mg/kg (Similar substance) Caldum Hydroxide (CAS# 1305-62-0): ID50 > 2500 mg/kg Caldum Sulfate dehydrate (CAS# 13397-24-5): No data available. Magnesium Oxide (CAS# 1309-48-4): No data available Quartz (CAS# 14808-60-7): No data available. Fily Ash (CAS# 68131-74-8): ID50 > 2000 mg/kg (Rabbit) Caldum Oxide (CAS# 1305-78-8): No data available.

 $\textbf{Skin Corrosion/Irritation:} \ \textbf{M} \textbf{ay cause skin initation.} \ \textbf{M} \textbf{ay cause serious burns in the presence of moisture.} \\$

Serious Eye Damage/Irritation: Causes serious eye damage. May cause burns in the presence of moisture.

Respiratory or Skin Sensitization: May cause respiratory tract irritation. The product may contain chromates, which may cause an allergic skin sensitization reaction.

Page 8 of 14 May 2015

Figure D.33 Sinclair Hills drilled shaft certification data submittal page 27.

Germ Cell Mutagenicity: No data available.

Carcinogenicity: Cement may contain trace amounts of respirable crystalline silica and hexavalent chromium which are classified by NTP and IARC as known human carcinogens.

ACGIH Carcinogens

Magnesium oxide (CAS# 1309-48-4): A4 Not classifiable as a human carcinogen. Portland cement (CAS# 65997-15-1): A4 Not classifiable as a human carcinogen Quartz (CAS# 14808-60-7): A2 Suspected human carcinogen.

IARC Monographs. Overall Evaluation of Carcinogenicity

Quartz (CAS# 14808-60-7): 1 Cardinogenic to humans.

US NTP Report on Carcinogens: Known carcinogen

Quartz (CAS# 14808-60-7): Known To Be Human Carcinogen.

US OSHA Specifically Regulated Substances: Cancer hazard

No data available

Teratogenicity: No data available

Specific Target Organ Toxicity (Repeated Exposure): Quartz (CAS #14808-60-7): Category 1, route of exposure: inhalation, target organs: respiratory tract and organs.

Specific Target Organ Toxicity (Single Exposure): Calcium oxide, Magnesium oxide, Portland cement; Category 3, route of exposure: inhalation and skin contact, target organs: Respiratory tract irritation, skin irritation.

Aspiration Hazard: No data available.

Potential Health Effects: Causes serious eye damage. May cause respiratory irritation. Causes severe burns. May cause an allergic skin reaction.

Chronic effects: Respirable crystalline silica (quartz) can cause silicosis, a fibrosis (scarring) of the lungs. Some studies show excess numbers of cases of scleroderma, connective tissue disorders, lupus, rheumatoid arthritis, chronic kidney diseases and end-stage kidney disease in workers exposed to respirable crystalline silica. Occupational exposure to respirable dust and respirable crystalline silica should be monitored and controlled. Danger of serious damage to health by prolonged exposure.

Crystalline silica is considered a hazard by inhalation. IARC has classified crystalline silica as a Group 1 substance, carcinogenic to humans. This classification is based on the findings of laboratory animal studies (inhalation and implantation) and epidemiology studies that were considered sufficient for carcinogenicity. Excessive exposure to crystalline silica can cause silicosis, a non-cancerous lung disease. Portland cement (CAS# 65997-15-1): is not classifiable as a human carcinogen.

Repeated or prolonged inhalation of dust may lead to chronic respiratory irritation. If sensitized to hexavalent chromium, a severe allergic dermal reaction may occur when subsequently exposed to very low levels.

12. ECOLOGICAL INFORMATION

Toxicity

Data for Mixture: Ready Mix Concrete (Concrete) (CAS# Mixture)

Aquatic Toxidity- Acute Crustacea EC50 Daphnia 350 mg/l, 48 hours, estimated

Fish LC50 Fish 703.9267 mg/l, 96 hours, estimated

Data for Component: Calcium Hydroxide (CAS# #1305-62-0)

Page 9 of 14 May 2015

Figure D.34 Sinclair Hills drilled shaft certification data submittal page 28.

Aquatic Toxicity-Acute Gasterosteus aculeatus 96 hr LC50 = 457 mg/L

Oncorhynchus mykiss 96 hr LCS0 = $50.6\,\mathrm{mg/L}$ Crangon septemspinos $96\,\mathrm{hr}$ LCS0 = $158\,\mathrm{mg/L}$ Daphnia magna $48\,\mathrm{hr}$ ECS0 = $49.1\,\mathrm{mg/L}$ Daphnia magna $48\,\mathrm{hr}$ ECS0 > $100\,\mathrm{mg/L}$ Danio rerio $96\,\mathrm{hr}$ LCS0 > $11.1\,\mathrm{mg/L}$

Aquatic Toxicity-Chronic Crangon septemspinosa 14 d NOEC = 32 mg/L

Data for Component: Calcium sulfate dihydrate (CAS# 13397-24-5)

Aquatic Toxicity-Acute Fish LC50 Fathead minnow (Pimephales promelas) > 1970 mg/l, 96 hours

Data for Component: Calcium oxide (CAS#1305-78-8)
Aquatic Toxidity-Acute Cyprinus carpio 96 hr LC50 = 1070 mg/L

Aquatic Toxidity-Chronic Tilapia nilotica 46 days NOEC = 100 mg/L

Data for Component: Quartz (CAS# 14808-60-7)

Aquatic Toxicity- Acute Daphnia magna 24 hr LL50 > 10000 mg/L

Danio rerio 96 hr LLO = 10000 mg/LDaphnia magna 48 hr EC50 > 100 mg/L (similar substance)

Desmodesmus subspicatus 72 hr EC50 > 14 mg/L (similar substance)

Persistence and Degradation: Persistent
Bioaccumulative Potential: Not Bioaccumulative
Mobility in Soil: No data available.
Other Adverse Effects: No data available.
Other Information: No data available.

13. DISPOSAL CONSIDERATIONS

The generation of waste should be avoided or minimized wherever possible. Disposal of this product, solutions and any byproducts should comply with the requirements of environmental protection and waste disposal legislation and any regional
local authority requirements. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor.

Untreated waste should not be released to the sewer unless fully compliant with the requirements of all authorities with
jurisdiction. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not
feasible. This material and its container must be disposed of in a safe manner. Care should be taken when handing empty
containers that have not been cleaned or rinsed out. Empty containers or liners may retain some product residues.

Avoid dispersal of spilled material and runoff, and contact with soil, waterways, drains and sewers.

Dispose in accordance with applicable federal, state, and local regulations. Empty containers may contain product residues. Do not dispose of waste into sewer. This material and its container must be disposed of as hazardous waste.

14. TRANSPORT INFORMATION

US DOT

UN Identification Number Not regulated Proper Shipping Name Not available Hazard Class and Packing Group Not available Shipping Label Not available Placard / Bulk Package Not available Emergency Response Guidebook Guide Number Not available

IATA Cargo

UN Identification Number Not regulated Shipping Name / Description Not available Hazard Class and Packing Group Not available

Page 10 of 14 May 2015

Figure D.35 Sinclair Hills drilled shaft certification data submittal page 29.

ICAO Label	Not available
Packing Instructions Cargo	Not available
Max Quantity Per Package Cargo	Not available
IATA Passenger	
UN Identification Number	Not regulated
Shipping Name / Description	Not available
Hazard Class and Packing Group	Not available
ICAO Label	Not available
Packing Instructions Passenger	Not available
Max Quantity Per Package	Not available
IMDĞ	
UN Identification Number	Not regulated
Shipping Name / Description	Not available
Hazard Class and Packing Group	Not available
IMDG Label	Not available
EmS Number	Not available
Marine Pollutant	Not available
15. REGULATORY INFORMAT	TION
OSHA Hazard Communication Standard	
	defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200.
·····	
U.S. Federal, State, and Local Regulatory I	Information
U.S. Toxic Substances Control Act	
All components are on the U.S. EPA TSCA I	Inventory List
TSCA Section 12(b) Export Notification (40	CFR 707, Subpt. D)
CERCLA (Superfund) reportable quantity ((lbs) (40 CFR 302.4)
This product is not listed as a CERCLA subs	tance.
Superfund Amendments and Reauthoriza	tion Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of
1986) Sections 311 and 312	
Immediate Hazard (Acute) - Yes	
Delayed Hazard (Chronic) - Yes	
Fire Hazard - No	
Pressure Hazard - No	
Reactivity Hazard - No	
Section 302 extremely hazardous substant Drug Enforcement Administration (DEA) (
	contains chemical(s) known to the State of California to cause cancer and birth
defects or other reproductive harm.	
US - California Hazardous Substances (Dir Calcium Hydroxide (CAS# 1305-62-0)	rector's):
Calcium oxide (CAS# 1305-78-8)	
Magnesium oxide (CAS# 1309-48-4)	
US - California Proposition 65 - Carcinoger	ns & Reproductive Toxicity (CRT):
Quartz (CAS# 14808-60-7)	ensur's cose. I processive en est condition of 10 month (dis
US - California Proposition 65 - CRT: Lister	d date/Carcinogenic substance
Quartz (CAS# 14808-60-7) Listed: October	1, 1988 Cardinogenic.
US - New Jersey RTK - Substances:	

Page 11 of 14 May 2015

Figure D.36 Sinclair Hills drilled shaft certification data submittal page 30.

Caldium Hydroxide (CAS# 1305-62-0) Calcium oxide (CAS# 1305-78-8) Listed. Calcium sulfate dihydrate (CAS# 13397-24-5) Limestone (CAS# 1317-65-3) Magnesium oxide (CAS# 1309-48-4) Portland cement (CAS# 65997-15-1) Quartz (CAS# 14808-60-7)
US - Pennsylvania RTK - Hazardous Substances:
Calcium Hydroxide (CAS# 1305-62-0) Caldium oxide (CAS# 1305-78-8) Calcium sulfate dihydrate (CAS# 13397-24-5) Limestone (CAS# 1317-65-3) Magnesium oxide (CAS# 1309-48-4) Portland cement (CAS# 65997-15-1) Quartz (CAS# 14808-60-7) US - Pennsylvania RTK - Hazardous Substances: Special hazard Calcium Hydroxide (CAS# 1305-62-0) Calcium oxide (CAS# 1305-78-8) Calcium sulfate dihydrate (CAS# 13397-24-5) Limestone (CAS# 1317-65-3) Magnesium oxide (CAS# 1309-48-4) Portland cement (CAS# 65997-15-1) Quartz (CAS# 14808-60-7) Canadian Regulatory Information

This product has been classified in accordance with the hazard criteria of the CPR and the MSDS contains all the information required by the CPR.

WHMIS status

Controller

WHMIS classification

E - Corrosive

WHMIS labeling

Inventory status	Country(s) or region Inventory name	On inventory (yes/no)*
Australia	Australian Inventory of Chemical Substances (AICS)	Yes
Canada	Domestic Substances List (DSL)	No
Canada	Non-Domestic Substances List (NDSL)	Yes
China	Inventory of Existing Chemical Substances in China (IECSC)	Yes
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	Yes
Europe	European List of Notified Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and New Chemical Substances (ENCS)	No
Korea	Existing Chemicals List (ECL)	Yes
New Zealand	New Zealand Inventory	No
Philippines	Philippine Inventory of Chemicals and	No

Page 12 of 14 May 2015

Figure D.37 Sinclair Hills drilled shaft certification data submittal page 31.

5	Chemical Substances (PICCS)	
United States & Puerto Rico	Toxic Substances Control Act (TSCA) Yes	
26	Inventory	

^{*}A "Yes" indicates that all components of this product comply with the inventory requirements administered by the governing country(s)

16. OTHER INFORMATION

HMIS® Health rating including an * indicates a chronic hazard HMIS® ratings Health: 3* Flammability: 0 Physical hazard: 1

NFPA ratings Health: 3 Flammability: 0 Instability: 1

Version:2015.05.27

Issue Date 5/27/2015 Prior Issue Date 10/12/2012

Description of Revisions

Revise to meet Globally Harmonized System for chemical hazard communication requirements pursuant to OSHA regulatory revisions 77 FR 17884, March 26, 2012.

Notice to reader

While the information provided in this safety data sheet is believed to provide a useful summary of the hazards of Portland cement as it is commonly used, the sheet cannot anticipate and provide all of the information that might be needed in every situation. Inexperienced product users should obtain proper training before using this product. In particular, the data furnished in this sheet do not address hazards that may be posed by other materials mixed with Portland cement to produce Portland cement products. Users should review other relevant material safety data sheets before working with this Portland cement or working on Portland cement products, for example, Portland cement concrete.

SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE PRODUCT OR THE MERCHANTABILITY OR FITNESS THEREOF FOR ANY PURPOSE OR CONCERNING THE ACCURACY OF ANY INFORMATION PROVIDED BY (Name of Company), except that the product shall conform to contracted specifications. The information provided herein was believed by the (Name of Company) to be accurate at the time of preparation or prepared from sources believed to be reliable, but it is the responsibility of the user to investigate and understand other pertinent sources of information to comply with all laws and procedures applicable to the safe handling and use of product and to determine the suitability of the product for its intended use. Buyer's exclusive remedy shall be for damages and no daim of any kind, whether as to product delivered or for non-delivery of product, and whether based on contract, breach of warranty, negligence, or otherwise shall be greater in amount than the purchase price of the quantity of product in respect of which damages are daimed. In no event shall Seller be liable for incidental or consequential damages, whether Buyer's daim is based on contract, breach of warranty, negligence or otherwise.

Abbreviations

ACGIH — American Conference of Governmental Industrial Hygienists
CAS# — Chemical Abstract Service
CERCLA — Comprehensive Emergency Response and Comprehensive Liability Act
CFR — Code of Federal Regulations
DOT — Department of Transportation

Page 13 of 14 May 2015

Figure D.38 Sinclair Hills drilled shaft certification data submittal page 32.

GHS — Globally Harmonized System
HEPA — High Efficiency Particulate Air
IATA — International Air Transport Association
IARC — International Air Transport Association
IARC — International Agency for Research on Cancer
IMDG — International Maritime Dangerous Goods
NIOSH — National Institute of Occupational Safety and Health
NOEC — No Observed Effect Concentration
NTP — National Toxicology Program
OSHA — Occupational Safety and Health Administration
PEL — Permissible Exposure Limit
REL — Recommended Exposure Limit
RQ — Reportable Quantity
SARA — Superfund Amendments and Reauthorization Act
SDS — Safety Data Sheet
TLV — Threshold Limit Value
TPQ — Threshold Planning Quantity
TSCA — Toxic Substances Control Act
TWA — Time-Weighted Average
UN — United Nations

Disclaimer Statement

This information is furnished without warranty, expressed or implied, as to accuracy or completeness. The information is obtained from various sources including the manufacturer and other third party sources. The information may not be valid under all conditions nor if this material is used in combination with other materials or in any process. Final determination of suitability of any material is the sole responsibility of the user.

** End of Safety Data Sheet **

Page 14 of 14 May 2015

Figure D.39 Sinclair Hills drilled shaft certification data submittal page 33.

PREFERRED MATERIALS Delivery Ticket for Structural Concrete 2248488 November 30, 2022 RELIABLE CONS Date 16-530 Preferred Materials, Inc. 800-331-3375 255 EDWARDS AVE Delivered to SR 555 & AIRPORT BLVD Phone # Address: LAKELAND, FL BARTOW, FL DOT class

CL IV 4000 Drilled Shaft

Water Gal

Water Gal

11:50 AM Cubic yards this load 8472 DOT mix ID 01-1457-03/NC(5:15) Cubic yards total today Mixing revolutions BRANFORD TYPEIL 1135 Type amount-lbs Slag amount-lbs Туре Argos 120 source 0.00 Type amount-lbs Pit num. amount-lbs %moisture Air admixture Euclid %moisture amount-lbs Туре amount-oz. Admixture Euclid 4.10 4580 **EUCON SE** D 231 amount-lbs 0.00 brand Type amount-oz Gal Admixture Batch water Euclid Amount 6200EXT source 99.00 824.67 Issuance of this ticket constitutes certification that the concrete batched was p recorded in compliance with Department specifications for Struct W30016363 CTQP Technician Identification numb Arrival on jobsite Number of revolutions upon arrival at job site 2:28 PM Water added at job site(gal or lbs) Additional mixing revs. With added water Time concrete completely discharged Total number of revolutions Initial slump Initial air Initial concrete temp Initial W/C ratio Accept. Slump Accept. Air Accept. Concrete temp Accept W/C ratio 39 Issuance of this ticket constitutes certification that the maximum specified water cementitious ratio was not exceeded and the batch was delivered and placed in compliance with Department specification requirements CTQP Technician Identification number Signature of contractors representative

Appendix E: US 17 Drilled Shaft 1-4 Construction Documents

Figure E.1 Bartow drilled shaft 1-4 concrete delivery ticket 1.

			FILL	- tor Str	ATERIALS	2	248488	
2	Figure	Del	ivery Tick	(et 101 oth	uctural Co	Noven	nber 30, 2022	
		OT Plant Num	nber 4330	6.530	Delivered to	KELI		
	1	Phor	plier Preferred ne # 800	Materials, Inc. 331-3375	Phone # Address:	SR 555 &	AIRPORT BLVD	
		Addre	TOO ED	WARDS AVE	Addissi			
						BA	RTOW, FL	
	Truck # 8472	DOT clas		DOT mix ID		Cubic yards	this load	
	Allowable Jobs	and Gal	- Todueu	Mixing revolu	7-03/NC(5:15)	Cubic yards	total today	
	Cement	6.87	11:50 AM	Fly ash	83		13	
	BRANFORD	TYPEIL	1133		l F		0	
	Slag	Туре	amount-lbs		Type		amount-lbs	
1	Argos source	Type	1755	Coarse Aggr HN717	egate #2	0.00	0	
	Conmo An		amount-lbs	Pit num.		%moisture	amount-lbs	
	Coarse Aggregate HN717	e #1 1.70	7000	Air admixture				
	Pit num.	%moisture	7280 amount-lbs	Euclid source	AEA-92S brand	Туре	3 amount-oz.	
Ic	Pit num. 9	% moisture Lbs.	amount-lbs 0.00 Gal.	Euclid source Admixture	brand	Type	amount-oz.	
	mount	00.00		Euclid source	6200EXT brand	F	amount-oz.	121.691
		99.00 Gal.	824.67 Lbs.			Туре		180.384
Iss	uance of this ticket orded in complianc	constitutes	cortification th	at the concrete	batched was prod	uced and inf	ormation	121.691 180.384 824.61
	W30	0016363		cations for Struc			1	1 15
	P Technician Identifi val on jobsite	cation numb	er	The second second				11:24
11110	var on jobsite	12:2	8 PM	Number of rev	olutions upon arr	ival at job si	e /	
Vate	er added at job site	(gal or lbs)		Additional mix	ing revs. With ad	ded water		
me	concrete complete	ly discharg	ed	Total number of revolutions				
tial:	slump	Init	tial air	Initial concrete	temp	Initial W/C	ratio	
cept	t. Slump	Ace	cept. Air	Accept. Concre	ete temp	Accept W/	C ratio 39	
s not uirer	ce of this ticket cor t exceeded and the ments Technician Identific	e batch was	s delivered an	d placed in co	specified water of con	epartment s	s ratio pecification	

Figure E.2 Bartow drilled shaft 1-4 concrete delivery ticket 2.

Ash Grove **Branford Plant**

Portland Cement Type IL (13)

Silos: 2, 3, 4, 5

October 2022 Mill Certificate Production Period: 9/1/2022 To 9/30/2022

		STAN	DARD REQUIREMENTS						
Chemical	Data		Physical Data						
Item	Spec. Limit	Results	Item	Spec. Limit	Results				
SiO ₂ (%)	A	18.3	Air Content of mortar (volume %)	12 max	1				
Al ₂ O ₃ (%)	A	4.5	Blaine fineness (m ² /kg)**	A	479				
Fe ₂ O ₃ (%)	A	3.1	Autoclave expansion (%)	-0.20 min/0.80 max	0.03				
CaO (%)	A	62.2	Fineness, retained in #325	A	2.1				
MgO (%)		0.5	Compressive strength (MPa/[psi]):						
SO ₃ (%)*	3.0 max	2.9	1 day		14.1 [2050				
Loss of ignition (%)	10.0 max	7.2	3 days	13.0[1890] min	27.1 [3930				
Na2O (%)	A	0.12	7 days	20.0[2900] min	36 [5230]				
K2O (%)	A	0.17	28 days (previous month)	28.0[4060] min	51.9 [7530				
			Time of setting (minutes)						
CO ₂ (%)	A	5.8	(Vicat) Initial	45 min	98				
Limestone (%)	15.0 max	14.1	(Vicat) Final	375 max	175				
CaCO ₃ in limestone (%)	70 min	90	Sulfate Resistance (ASTM C1012 180d) (%)	0.10 max	0.05				
Inorganic process addition (%)	5.0 max		Heat of hydration (ASTM C1702 3d)	B	267				
			Mortar Bar Expansion (ASTM C1038) (%)*	0.020 max	0.001				
		OPTI	ONAL REQUIREMENTS						
Item	Spec. Limit	Results	Item	Spec. Limit	Results				
Equiv. Alkalies (%)	0.60 max	0.23	Density (ASTM C188) (g/cm3)	B	3.03				
Chloride (%)	B	0.01							
			Additional Data						
Type	Limestone		Inorganic Processing Addition						
Amount	14.1		-						
SiO ₂ (%)	5.3								
Al ₂ O ₃ (%)	0.6		-						
Fe ₂ O _{3 (%)}	0.2								
CaO (%)	51.1								
SO ₃ (%)	0.7								

This cement meets ASTM C595 and AASHTO M240 Specification for Type IL (MS) Portland Cement

November 18, 2022 Branford Cement Plant Ash Grove 5117 U.S. Hwy 27 Branford, FL 32008

Zheng Liu Tel: (386) 935-5013 - Fax: (386) 935-5080 **Quality Control Manager**

Figure E.3 Bartow drilled shaft 1-4 Type IL cement mill certificate.

This cement also meets all applicable FDOT (Facility ID: CMT 29), SCDOT, and NCDOT (Plant ID: CM69) specifications for Type IL cement

^{*}It is permissible to exceed the max value for SO3 content, provided it is demonstrated by ASTM C1038 that the cement will not develop expansion exceeding 0.020% in 14 Days

A Not applicable.

B Test result represents most recent value and is provided for information only.

C Test result is not yet available

Figure E.4 Bartow drilled shaft 1-4 Lehigh slag mill certificate page 1.

Client: Lehigh Hanson / Cape Canaveral Project Number: 102122-01

Project: Monthly Production Evaluation

Analyst: Andy Chafin

Contact: Inna Reed

Submitted by: Inna Reed Date Analyzed: 11/18/2022 Date Received: 10/21/2022 Date Reported: 11/29/2022

REPORT OF MONTHLY PRODUCTION SAMPLES

Client Sample ID:	Material:	Testing requested:
P 10/2-3/22	GGBFS	Chemistry, Density, Blaine, Chloride,
P 9/17-18/22	GGBFS	Chemistry, Density, Blaine, Chloride,

Cape Canaveral Slag

			CAPE 10/2-3-22	CAPE 10/17-18/22
_	SiO2	%	35.71	34.42
	Al2O3	%	13.04	14.94
	Fe2O3	%	0.60	0.69
	CaO	%	39.39	39.32
	MgO	%	6.11	5.57
	SO3 (Corrected)	%	1.02	1.03
	Na2O	%	0.21	0.21
	K20	%	0.39	0.34
	Total Alkali	%	0.53	0.48
	TiO2	%	0.68	0.59
	MnO	%	0.24	0.15
	Specific Gravity	%	2.90	2.90
	Blaine	m ² /g	500	450
	Sulfide	%	0.75	0.80
_	Chloride	%	<0.005	<0.005
	XRF SO3	%	2.54	2.68

Oxide values measured in accordance with ASTM C114

Specific Gravity determined in accordance with ASTM C188

Blaine value was determined in accordance with ASTM C204

Sulfide values were determined by difference of elemental sulfur and sulfate sulfur determined

by inductively coupled plasma spectroscopy

Chloride ion content determined in accordance with ASTM C114

1 of 1 102122-01 October 22

Figure E.5 Bartow drilled shaft 1-4 Lehigh slag mill certificate page 2.

Appendix F: 34% Fly Ash (Class F) Model Concrete Mix Design and Mill Certificates

٠,			•					. :
SAP # 15	02463		2011	memerally acold	. 186			
-	DRILLED 8	SHAFI MIX	,-	RETE MIX DESIGNATION Number: 07-0966		Minimum St	rength: 40	<u>iaq 00</u>
٠			0.75	Issuer's Nam		· · · · · · · · · · · · · · · · · · · ·		
Effective Dale: <u>01</u> Status: <u>AP</u> I	<u>/28/2010</u> PROVED	Hot Weather	7 <u>1es</u>	Project:		esteré PE		
Producer : Cer	mex, Inc.	•		Plant 4	k ; · ·		_ ,	. '
		2	- 5	ource of Materials	. QPL	#!	SŞD FM	Geologic
Product Product Name	Quantity	Producer Plant#			Spec.		3,15	Тура
cement:	500 LB	CEMEX.BRO	ooksyil	LESOUTH	AASHTO:N	185 - Type II	0.10	
ype II cement. ly Ash:	265 LB	SEPARATIO	N TECH	NOLOGIES-BIG BEN		,	2,25	
Class F Fly Ash		FA30			ASTM C 6	18 - Class F	0.75	Lindastoni
Coarse Aggregate: 89:Stone	1650 LB	CEMEX 870,89					2,45	Limeston
lne Aggregate:	.990: LB	CEMEX					2,03 2.28	Silica Sa
Silica Sand Air Ent Admixture:	2,0 OZ	WR GRACE			8924	0002	, , ,	
Darex AEA					AASHTO N	1164 - AEA		
ýpe D Admixture: VRDA 60		WR GRACE	<u></u>			1 194 - Type D		
Vater. Vater for Concrete	37,50 GA						٠.	
Vater:	312.0 LB			,,				
Vafer for Concrete				·				· · · · · ·
						Prod	ucer Data	
		Specificat			Inches	Prodi W/O Ratjo	ucer Data -0.41	•
Slump (Targel Slúm	p; 8,6 (nches)		7,00 to	10.00	.lnches .bercent	W/O Retio Theoretical Yiel	0.41 d 27.00	LB per LB
Air Content	p; 8,5 (nches)		7,00 to	10.00	percent	W/O Retio Theoretical Yiel Temperature	0.41 d 27.00 97	CF degree F
Air Content N/C∙Raŭo	p; 8,6 (nches)		7.00 to 0,00 to Le	10.00 6,00	percent	W/O Retio Theoretical Yiel Temperature Stump	0.41 d 27.00 97 7.75	CF degree F lijches:
Air Content MC:Ratio Temperature			7.00 to 0.00 to Le	10.00 6.00 ss than or equal to 0.41	percent LB per LB	W/O Retio Theoretical Yiel Temperature Slump Density	0.41 d 27.00 97 7.75 137.3	CF' degree F lijches: LB per CF
Air Content N/C∙Raŭo	ih <u>Greala</u>)	7.00 to 0.00 to Le	10.00 6.00 ss than or equal to 0.41	percent LB per LB degree F	W/O Retio Theoretical Mel Temperature Stump Density Chloride Conter	0.41 d 27.00 97 7.75 137.3	CF' degree F lijehes: LB per CF LB per CY
Alr Content N/C-Raŭo Temperature Compressive Streng	ih <u>Greala</u>)	7.00 to 0.00 to Le	10.00 6.00 ss than or equal to 0.41	percent LB per LB degree F	W/O Ratio Theoretical Mel Temperature Slump Density Chlorida Content Air Content	0.41 d 27.00 97 7.75 137.3	CF' degree F lijches: LB per CF LB per CY percent
Alr Content MC Ratio Lemperature Compressive Streng ggregate Correction	ih <u>Greala</u>)	7.00 to 0.00 to Le	10.00 6.00 ss than or equal to 0.41	percent LB per LB degree F	W/O Ratio Theoretical Mel Temperature Slump Density Chlorida Conter Air Content 28 DAY 22 Hour	0.41 d 27.00 97 7.76 137.3 at 0.155 2.19 6980 990	CF' degree F lijehes: LB per CF LB per CY
Air Content Air Content Air Content Compressive Streng ggregate Correction Comments;	ith <u>Greate</u> n Factor: <u>D.6</u>	rthen orequal	7.00 to 0.00 to Le	10.00 6.00 ss than or equal to 0.41	percent LB per LB degree F	W/O Ratio Theoretical Mel Temperature Slump Density Chlorida Content 28 DAY	0.41 d 27.00 97 7.76 437.3 at 0.155 2.19 6980	CF' degree F lijches: LB per CF LB per CY perceijt
Alr Content N/C-Ratio L'emperature Compressive Streng ggregate Correction Comments; 3% air used to acful	ih <u>Greale</u> 1 Factor: <u>D.6</u> sve Theo. yiel	r <u>then or equal</u>	7.00 to 0.00 to Le	10.00 6.00 ss than or equal to 0.41	percent LB per LB degree F	W/O Ratio Theoretical Mel Temperature Slump Density Chlorida Conter Air Content 28 DAY 22 Hour	0.41 d 27.00 97 7.76 137.3 at 0.155 2.19 6980 990	CF' degree F lijches: LB per CF LB per CY perceijt
Alr Content N/C-Ratio L'emperature Compressive Streng ggregate Correction Comments; 3% alr used to soft This nix mad 0 minus 5 hours and 0 minus	th <u>Greater</u> Péctor: <u>D.6</u> eve Theo. yiel d a 5 Inch-slun tes/maximum.	rthen or equal	7.00 to 0.00 to Le to 4000	10.00 6.00 ss than or equal to 0.41	percent LB per LB degree F	W/O Ratio Theoretical Mel Temperature Slump Density Chlorida Conter Air Content 28 DAY 22 Hour	0.41 d 27.00 97 7.76 137.3 at 0.155 2.19 6980 990	CF' degree F lijches: LB per CF LB per CY percent
Air Content N/C-Railo L'emperature Compressive Streng ggregate Correction Comments; 3% air used to achi This ritx maintailper	th <u>Greater</u> Practor: <u>D.6</u> eve Theo, yiel d a 5 Inch slun tes/maximum.	rthen or equal Id of 27 Inp for 179 F(346.4.2)	7.00 to 0.00 to Le to 4000	10.00 6.00 ss than or equal to 0.41	percent LB per LB degree F	W/O Ratio Theoretical Mel Temperature Slump Density Chlorida Conter Air Content 28 DAY 22 Hour	0.41 d 27.00 97 7.76 137.3 at 0.155 2.19 6980 990	CF degree F lijchës: LB per CF LB per CY perceijt
Air Content Air Castle Lemperature Compressive Streng ggregate Correction Comments; 3% air used to acful This mix mathalinge 5 hours and 0 minu Ayerage Amblent T Ayerage Congrete 80 ounces per cy of	th <u>Greater</u> n Factor: <u>D.6</u> eve Theo. yiel d e-5 inch slun eriperature of	rthen or equal ld of 27 np for 179 F(346-3.2) of 84 F (346-3.2)	7.00 to 0.00 to 4000	10.00 6.00 ss than or equal to 0.41	percent LB per LB degree F	W/O Ratio Theoretical Mel Temperature Slump Density Chlorida Conter Air Content 28 DAY 22 Hour	0.41 d 27.00 97 7.76 137.3 at 0.155 2.19 6980 990	CF degree F lijchës: LB per CF LB per CY perceijt
Air Content N/C-Ratio Lemperature Compressive Streng ggregate Correction Comments; 3% air used to soft This mix mathating A yerage Concrete A yerage Concrete So ounces per cy of the Siump Loss Tes	th <u>Greate</u> n Factor: <u>D.6</u> eve Theo. yield a 5 Inch-slum enneatmum enneatmum enneature of remperature of fretander was al resulta	rthen or equal ld of 27 np for 179 F(346-3.2) of 84 F (346-3.2)	7.00 to 0.00 to 4000	10.00 6.00 ss than or equal to 0.41	percent LB per LB degree F	W/O Ratio Theoretical Mel Temperature Slump Density Chlorida Conter Air Content 28 DAY 22 Hour	0.41 d 27.00 97 7.76 137.3 at 0.155 2.19 6980 990	CF degree F lijchës: LB per CF LB per CY perceijt
Air Content Air Content Air Cadio Compressive Streng ggregate Correction Comments; 3% air used to acful This mix maintaines 5 hours and 0 minu Ayenage Amblent I Ayenage Congrete So ounces per cy of the Slump Losa Te Witnessing Agent: Indeppindent Assur	th <u>Greater</u> Factor: <u>D.6</u> eve Theo. yield a 5 Incheluntes/maximum emperature of remocrature of recoults fretander was at results Joe Lee	rthen or equal Id of 27 Inp for 179 1-(346-5.2) of 84 1-(349-3.2) Lused to achiev	7.00 to 0.00 to 4000	10.00 6.00 ss than or equal to 0.41	percent LB per LB degree F	W/O Ratio Theoretical Mel Temperature Slump Density Chlorida Conter Air Content 28 DAY 22 Hour	0.41 d 27.00 97 7.76 137.3 at 0.155 2.19 6980 990	CF degree F lijchës: LB per CF LB per CY perceijt
Air Content Air Content Air Compressive Streng ggregate Correction Comments; 3% air used to acful This mix maintaines 5 hours and 0 minu Average Congrete .so ounces per cy of the Slump Loss Te Witnessing Agent: Independent Assur	th <u>Greater</u> Factor: <u>D.6</u> eve Theo. yield a 5 Incheluntes/maximum emperature of remocrature of recoults fretander was at results Joe Lee	rthen or equal Id of 27 Inp for 179 1-(346-5.2) of 84 1-(349-3.2) Lused to achiev	7.00 to 0.00 to 4000	10.00 6.00 ss than or equal to 0.41	percent LB per LB degree F	W/O Ratio Theoretical Mel Temperature Slump Density Chlorida Conter Air Content 28 DAY 22 Hour	0.41 d 27.00 97 7.76 137.3 at 0.155 2.19 6980 990	CF' degree F lijches: LB per CF LB per CY percent
Air Content N/C-Ratio Lemperature Compressive Streng ggregate Correction Comments; 3% air used to soft This rift maintaine Average Amblent I Ayerage Concrete .so ounces per cy of the Slump Loss Te: Witnessing Agerts; District 1/7 Melerial	th <u>Greater</u> Factor: <u>D.6</u> eve Theo. yield a 5 Incheluntes/maximum emperature of remocrature of recoults fretander was at results Joe Lee	rthen or equal Id of 27 Inp for 179 1-(346-5.2) of 84 1-(349-3.2) Lused to achiev	7.00 to 0.00 to 4000	10.00 6.00 ss than or equal to 0.41	percent LB per LB degree F	W/O Ratio Theoretical Mel Temperature Slump Density Chlorida Conter Air Content 28 DAY 22 Hour	0.41 d 27.00 97 7.76 137.3 at 0.155 2.19 6980 990	CF degree F lijchës: LB per CF LB per CY perceijt
Air Content N/C-Ratio Lemperature Compressive Streng ggregate Correction Comments; 3% air used to soft This rift maintaine A verage Ambient I A yerage Congrete .so ounces per cy of the Slump Loss Te: Witnessing Agerts; District 1/7 Melerial	th <u>Greater</u> Factor: <u>D.6</u> eve Theo. yield a 5 Incheluntes/maximum emperature of remocrature of recoults fretander was at results Joe Lee	rthen or equal Id of 27 Inp for 179 1-(346-5.2) of 84 1-(349-3.2) Lused to achiev	7.00 to 0.00 to 4000	10.00 6.00 ss than or equal to 0.41	percent LB per LB degree F	W/O Ratio Theoretical Mel Temperature Slump Density Chlorida Conter Air Content 28 DAY 22 Hour	0.41 d 27.00 97 7.76 137.3 at 0.155 2.19 6980 990	CF' degree F lijches: LB per CF LB per CY percent
Air Content N/C-Ratio Lemperature Compressive Streng ggregate Correction Comments; 3% air used to soft This rift maintaine A verage Ambient I A yerage Congrete .so ounces per cy of the Slump Loss Te: Witnessing Agerts; District 1/7 Melerial	th <u>Greater</u> Factor: <u>D.6</u> eve Theo. yield a 5 Incheluntes/maximum emperature of remocrature of recoults fretander was at results Joe Lee	rthen or equal Id of 27 Inp for 179 1-(346-5.2) of 84 1-(349-3.2) Lused to achiev	7.00 to 0.00 to 4000	10.00 6.00 ss than or equal to 0.41	percent LB per LB degree F	W/O Ratio Theoretical Mel Temperature Slump Density Chlorida Conter Air Content 28 DAY 22 Hour	0.41 d 27.00 97 7.76 137.3 at 0.155 2.19 6980 990	CF' degree F lijches: LB per CF LB per CY percent
Air Content N/C-Ratio Lemperature Compressive Streng ggregate Correction Comments; 3% air used to soft This rift maintaine A verage Ambient I A yerage Congrete .so ounces per cy of the Slump Loss Te: Witnessing Agerts; District 1/7 Melerial	th <u>Greater</u> Factor: <u>D.6</u> eve Theo. yield a 5 Incheluntes/maximum emperature of remocrature of recoults fretander was at results Joe Lee	rthen or equal Id of 27 Inp for 179 1-(346-5.2) of 84 1-(349-3.2) Lused to achiev	7.00 to 0.00 to 4000	10.00 6.00 ss than or equal to 0.41	percent LB per LB degree F	W/O Ratio Theoretical Mel Temperature Slump Density Chlorida Conter Air Content 28 DAY 22 Hour	0.41 d 27.00 97 7.76 137.3 at 0.155 2.19 6980 990	CF' degree F lijches: LB per CF LB per CY perceijt

Figure F.1 34% Fly Ash Model concrete mix design.

Chemical and Physical Analysis of Fly Ash

Developed For: Separation Technologies, LLC 101 Hampton Avenue Needham. MA 02494

		Neednam,	WA 02494		
	Plant of Origin:		Big Bend	Sample Da	ate Range: 12/15/200
Job: 14709	Sample ID:				to: 12/21/200
Report Date: 03/02/2010	Docket:	-		Date	Received: 01/04/201
Chemical Comp			ASTM C 618-0	8 Specifications	
(by Wyoming Analytical Lal				Class F	Class C
Total Silica,	85.1		70.0 Min	50.0 Min	
		47.8			
A		19.6			
	Iron Oxide:		17.7		
	Sulfur Trioxide:	1.8		5.0 Max	5.0 Max
	Calcium Oxide:	5.2			
Mo	oisture Content:	0.5		3.0 Max	3.0 Max
L	oss on Ignition:	2.5		6.0 Max	6.0 Max
				AASHTO M295-	06 Specifications
Available Alk	alies (as Na2O):	0.8		1.5 Max	1.5 Max
	Sodium Oxide:		0.25		
Po	otassium Oxide:		0.79		
Dharala at T	D II-			ASTM C 618-08	3 Specifications
<u>Physical 1</u>	est Results			Class F	Class C
Fineness, Retained on	#325 Sieve (%):	16.9		34 Max	34 Max
Strength A	ctivity Index (%)				
Ratio to Co	introl @ 7 Days:	87.1			
Ratio to Cor	ntrol @ 28 Days:	92.3		75 M in	75 Min
Water Requiremen	nt, % of Control:	97.9		105 Max	105 Max
Soundness, Autoclave	Expansion (%):	-0.08		0.8 Max	0.8 Max
Drying Shrinkage, Increase	@ 28 Days (%):	0.00		0.03 Max	0.03 Max
I	Density Mg/m ³ :	2.48		- William	OO REGIONAL
omments: Meets Class F. ASTM	C 618 and AASI	TO M 205		10.	R WEST

Comments: Meets Class F, ASTM C 618 and AASHTO M 295

CTL | Thompson Materials Engineers, Inc.

Orville R. Werner II, P.E.

22 Lipan Street | Denver, Colorado 80223 | Telephone: 303-825-0777 Fax: 303-893-1568
This test report relates only to the items tested and shall not be reproduced, except in full, without written approval of CTL Thompson, Inc.

Figure F.2 34% Fly Ash Model mill certificate for Class F Fly Ash.

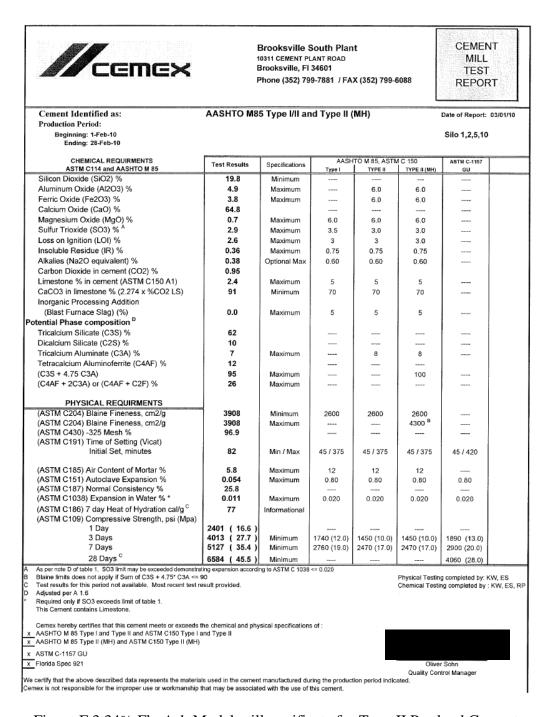


Figure F.3 34% Fly Ash Model mill certificate for Type II Portland Cement.